Some $1 \times n$ generalized grid classes are context-free

Robert Brignall Jakub Sliačan

Permutation Patterns 2018

View permutations as drawings

Enumerating permutation classes

Class

Collection of permutations closed under containment (if $\pi \in C$, then all subpermutations $\sigma \subset \pi$ are also in C).

Enumeration

Determining the number of permutations of each length in C.

Context-free class

Definition

A class C is *context-free* if it coincides with the first component of the system of equations

$$\begin{cases} S_1 &= f_1(\mathcal{Z}, S_1, \dots, S_r) \\ \vdots \\ S_r &= f_r(\mathcal{Z}, S_1, \dots, S_r) \end{cases}$$

where f_i are constructors only involving +, ×, and $\mathcal{E} = \emptyset$.

Context-free class: example

$$egin{aligned} \mathcal{S} &= \mathcal{Z} + \mathcal{S}_\oplus \mathcal{S} + \mathcal{S}_\ominus \mathcal{S} \ \mathcal{S}_\ominus &= \mathcal{Z} + \mathcal{S}_\oplus \mathcal{S} \ \mathcal{S}_\oplus &= \mathcal{Z} + \mathcal{S}_\ominus \mathcal{S}, \end{aligned}$$

Context-free classes are nice

Many things are context-free, e.g.

finitely many simples \implies context-free

Shades of niceness

 $\mathsf{rational} \subset \mathsf{algebraic} \subset D\mathsf{-finite} \subset D\mathsf{-algebraic} \subset \mathsf{power} \ \mathsf{series}$

Theorem (Chomsky-Schützenberger)

A combinatorial class C that is context-free admits an algebraic generating function.

Grid classes

Definition

Permutation *grid class* is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

Grid classes

Definition

Permutation *grid class* is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

Grid classes

Definition

Permutation *grid class* is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

Example: where the trouble lies

We can't enumerate this

Even if C_{ii} are permutation classes that we CAN enumerate

\ldots or this

 ${\mathcal M}$ monotone classes, ${\mathcal C}$ non-monotone class

... actually, not even this

\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}		\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}		\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}	 	\mathcal{M}

 $\left| \begin{array}{cc} \mathcal{M} & \mathcal{M} \\ \mathcal{M} & \mathcal{M} \end{array} \right|$

 \mathcal{M} monotone classes But! we know their growth rates = (spectral radius)² of the row-column graph [Bev15a].

...also ...

these have rational generating functions [AAB⁺13]

generating functions conjectured for monotone increasing strips [Bev15b]

Today

Theorem

Let C be a context-free permutation class that admits a combinatorial specification which tracks both the right-most and the left-most points. Let \mathcal{M}_i be a sequence of n-1 monotone permutation classes. Then $\mathcal{M}_1|\ldots|\mathcal{M}_k|\mathcal{C}|\mathcal{M}_{k+1}|\ldots|\mathcal{M}_{k+\ell}$ is a context-free permutation class that admits an algebraic generating function.

Leftmost gridlines

$\mathsf{Griddable} \to \mathsf{gridded}$

Convention:

Let π be a permutation from $C_1|C_2$. The gridline in π is chosen to be the left-most possible. I.e. if it was any further left, the sub-permutation to the right of it would not belong to the designated class C_2 .

Leftmost gridlines: example C|Av(21)

Gaps associated with points

The gap associated with x is the space on the RHS below x and above the next point below it on the LHS.

What we want to do: example

Enumerate Av(21|21|21). Append cells from left to right.

1. Start with a single increasing sequence on the LHS.

2. Now append stuff on the RHS.

3. Finally, append the third cell.

Tracking the rightmost point

The rightmost point of C is critical. So pick the combinatorial specification of C that tracks the rightmost point.

Tracking the rightmost point

The rightmost point of C is critical. So pick the combinatorial specification of C that tracks the rightmost point.

$$\begin{split} \mathcal{S}^* &= \mathcal{Z}^* + \mathcal{S}_{\oplus} \mathcal{S}^* + \mathcal{S}^* \mathcal{S}_{\ominus} \\ \mathcal{S} &= \mathcal{Z} + \mathcal{S}_{\oplus} \mathcal{S} + \mathcal{S} \mathcal{S}_{\ominus} \\ \mathcal{S}_{\ominus} &= \mathcal{Z} + \mathcal{S}_{\oplus} \mathcal{S} \\ \mathcal{S}_{\oplus} &= \mathcal{Z} + \mathcal{S} \mathcal{S}_{\ominus}. \end{split}$$

Operators

Consider Ω_1 , an operator that appends a single point on the right of a class $\mathcal{T}_m = X_1 \dots X_m$ (bottom to top).

 Ω_{11} is the most involved operator – placing a sequence on the RHS with designated bottom and top point.

All operators

We need the following information captured when appending sequences on the RHS.

- Ω_0 : Nothing appended on the RHS.
- Ω₁: Single point appended on the RHS (leftmost & rightmost coincide)
- Ω_{∞} : Possibly empty sequence by itself.
- Ω_{10} : Point followed by a (possibly empty) sequence above.
- Ω_{01} : Point preceded by a (possibly empty) sequence below.
- Ω₁₁: Point followed by a (possibly empty) sequence followed by another point.

Apply Ω_{11} to a class $\mathcal{C} = X_1 X_2 X_3^* X_4$

23 / 28

Apply Ω_{11} to a class $\mathcal{C} = X_1 X_2 X_3^* X_4$

Appending a monotone decreasing class

25 / 28

Appending on the left

Putting it all together

Consider C|Av(21).

$$\mathcal{F} = \mathcal{E} + \mathcal{M} + rac{\Omega_1(\overline{\mathcal{C}}^*) + \Omega_{11}(\overline{\mathcal{C}}^*)}{\mathcal{Z}}$$

- Either empty, or non-empty increasing, or non-empty C next to non-empty Av(21).
- Need phantom points, hence \overline{C} .
- Need to track rightmost points only, so C^* .
- ► Need to remove the phantom point after we're done, hence 1/Z in the last term.

In general more complicated, but same ideas.

Things to notice

- algorithmic approach \rightarrow can be automated
- it's constructive: can enumerate (provide g.f. for) every such $1 \times n$ grid class
- rational? D-finite?
- ▶ *n* × *m* acyclic grid classes?
- etc.

M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter.

Geometric grid classes of permutations.

Transactions of the American Mathematical Society, 365(11):5859–5881, 2013.

D. I. Bevan.

Growth rates of permutation grid classes, tours on graphs, and the spectral radius.

Transactions of the American Mathematical Society, 367(8):5863–5889, 2015.

D. I. Bevan.

On the growth of permutation classes.

PhD thesis, The Open University, 2015.