# Some $1 \times n$ generalized grid classes are context-free 

Robert Brignall Jakub Sliačan

Permutation Patterns 2018

View permutations as drawings

635814972


## Enumerating permutation classes

Class
Collection of permutations closed under containment (if $\pi \in \mathcal{C}$, then all subpermutations $\sigma \subset \pi$ are also in $\mathcal{C}$ ).

Enumeration
Determining the number of permutations of each length in $\mathcal{C}$.

## Context-free class

## Definition

A class $\mathcal{C}$ is context-free if it coincides with the first component of the system of equations

$$
\left\{\begin{aligned}
\mathcal{S}_{1} & =f_{1}\left(\mathcal{Z}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{r}\right) \\
& \vdots \\
\mathcal{S}_{r} & =f_{r}\left(\mathcal{Z}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{r}\right)
\end{aligned}\right.
$$

where $f_{i}$ are constructors only involving,$+ \times$, and $\mathcal{E}=\emptyset$.

## Context-free class: example



## Context-free classes are nice

Many things are context-free, e.g.

$$
\text { finitely many simples } \Longrightarrow \text { context-free }
$$

Shades of niceness
rational $\subset$ algebraic $\subset D$-finite $\subset D$-algebraic $\subset$ power series

Theorem (Chomsky-Schützenberger)
A combinatorial class $\mathcal{C}$ that is context-free admits an algebraic generating function.

## Grid classes

## Definition

Permutation grid class is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

## Grid classes

## Definition

Permutation grid class is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.


$$
\text { belongs to }\left[\begin{array}{cc}
\operatorname{Av}(12) & \operatorname{Av}(21) \\
\operatorname{Av}(12) & \operatorname{Av}(21)
\end{array}\right] \text {. }
$$

## Grid classes

## Definition

Permutation grid class is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

belongs to $\left[\begin{array}{ll}\operatorname{Av}(12) & \operatorname{Av}(21) \\ \operatorname{Av}(12) & \operatorname{Av}(21)\end{array}\right]$.

## Example: where the trouble lies

2615743 is in ${ }^{\operatorname{Av}(321)} \operatorname{Av(12)}$ as witnessed by the middle two partitions.


No!


Yes!


Yes!


No!

## We can't enumerate this

| $\mathcal{C}_{11}$ | $\mathcal{C}_{12}$ | $\mathcal{C}_{13}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathcal{C}_{21}$ | $\mathcal{C}_{22}$ | $\mathcal{C}_{23}$ |  |  |
| $\mathcal{C}_{31}$ | $\mathcal{C}_{32}$ | $\mathcal{C}_{33}$ |  |  |
|  |  |  |  |  |
|  |  |  |  |  |


|  | $\mathcal{C}_{1 m}$ |  |
| :--- | :--- | :--- |
|  | $\mathcal{C}_{2 m}$ |  |
| $\cdots$ | $\mathcal{C}_{3 m}$ |  |
|  |  | - |
|  |  |  |

$$
\begin{array}{ll|l}
\mathcal{C}_{n 1} & \mathcal{C}_{n 2} & \mathcal{C}_{n 3} \\
\hline
\end{array}
$$

$$
\mathcal{C}_{n m}
$$

Even if $\mathcal{C}_{i j}$ are permutation classes that we CAN enumerate

## ... or this

| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  |  | $\mathcal{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{C}$ | $\mathcal{M}$ |  |  | $\mathcal{M}$ |
| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  | $\cdots$ | $\mathcal{M}$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | $\vdots$ |  |  | $\ddots$ |  |
| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  |  |  | $\mathcal{M}$ |

$\mathcal{M}$ monotone classes, $\mathcal{C}$ non-monotone class

## ... actually, not even this

| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  |  | $\mathcal{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  |  | $\mathcal{M}$ |
| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  | $\cdots$ | $\mathcal{M}$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\vdots$ |
| $\mathcal{M}$ | $\mathcal{M}$ | $\mathcal{M}$ |  |  |  |  |

$\mathcal{M}$ monotone classes
But! we know their growth rates $=(\text { spectral radius })^{2}$ of the row-column graph [Bev15a].
these have rational generating functions $\left[\mathrm{AAB}^{+} 13\right]$

generating functions conjectured for monotone increasing strips [Bev15b]

...


## Today

| $\mathcal{M}_{1}$ | $\ldots$ | $\mathcal{M}_{k}$ | $\mathcal{C}$ | $\mathcal{M}_{k+1}$ |  | $\ldots$ | $\mathcal{M}_{k+1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Theorem

Let $\mathcal{C}$ be a context-free permutation class that admits a combinatorial specification which tracks both the right-most and the left-most points. Let $\mathcal{M}_{i}$ be a sequence of $n-1$ monotone permutation classes. Then $\mathcal{M}_{1}|\ldots| \mathcal{M}_{k}|\mathcal{C}| \mathcal{M}_{k+1}|\ldots| \mathcal{M}_{k+\ell}$ is a context-free permutation class that admits an algebraic generating function.

## Leftmost gridlines

## Griddable $\rightarrow$ gridded

## Convention:

Let $\pi$ be a permutation from $\mathcal{C}_{1} \mid \mathcal{C}_{2}$. The gridline in $\pi$ is chosen to be the left-most possible. I.e. if it was any further left, the sub-permutation to the right of it would not belong to the designated class $\mathcal{C}_{2}$.

Leftmost gridlines: example $\mathcal{C} \mid \operatorname{Av}(21)$


## Gaps associated with points



The gap associated with $x$ is the space on the RHS below $x$ and above the next point below it on the LHS.

## What we want to do: example

Enumerate $\operatorname{Av}(21|21| 21)$. Append cells from left to right.

1. Start with a single increasing sequence on the LHS.

2. Now append stuff on the RHS.

3. Finally, append the third cell.


## Tracking the rightmost point

The rightmost point of $\mathcal{C}$ is critical. So pick the combinatorial specification of $\mathcal{C}$ that tracks the rightmost point.

## Tracking the rightmost point

The rightmost point of $\mathcal{C}$ is critical. So pick the combinatorial specification of $\mathcal{C}$ that tracks the rightmost point.


$\mathcal{S}_{\ominus}=\mathcal{Z}+$| $\mathcal{S}_{\oplus}$ |  |
| :--- | :--- |
|  |  |

$$
\begin{aligned}
\mathcal{S}^{*} & =\mathcal{Z}^{*}+\mathcal{S}_{\oplus} \mathcal{S}^{*}+\mathcal{S}^{*} \mathcal{S}_{\ominus} \\
\mathcal{S} & =\mathcal{Z}+\mathcal{S}_{\oplus} \mathcal{S}+\mathcal{S} \mathcal{S}_{\ominus} \\
\mathcal{S}_{\ominus} & =\mathcal{Z}+\mathcal{S}_{\oplus} \mathcal{S} \\
\mathcal{S}_{\oplus} & =\mathcal{Z}+\mathcal{S} \mathcal{S}_{\ominus}
\end{aligned}
$$

## Operators

Consider $\Omega_{1}$, an operator that appends a single point on the right of a class $\mathcal{T}_{m}=X_{1} \ldots X_{m}$ (bottom to top).

$$
\begin{aligned}
\Omega_{1}(\mathcal{Z})= & \mathcal{Z}^{*} \mathcal{Z} \\
\Omega_{1}\left(\mathcal{Z}^{*}\right)= & \mathcal{Z}^{*} \mathcal{Z} \\
\Omega_{1}\left(\mathcal{T}_{m}\right)= & \begin{cases}\Omega_{1}\left(X_{1}^{*}\right) \Omega_{0}\left(X_{2} \cdots X_{m}\right) \\
\Omega_{1}\left(X_{1}\right) \Omega_{0}\left(X_{2} \cdots X_{m}\right)+\Omega_{0}\left(X_{1}\right) \Omega_{1}\left(X_{2} \cdots X_{m}\right), & \text { if } k=1\end{cases} \\
& {\mathcal{Z} / \mathcal{Z}^{*}}_{\bullet}^{\bullet} \quad \Omega_{1}
\end{aligned}
$$

## The beast operator

$\Omega_{11}$ is the most involved operator - placing a sequence on the RHS with designated bottom and top point.


## All operators

We need the following information captured when appending sequences on the RHS.

- $\Omega_{0}$ : Nothing appended on the RHS.
- $\Omega_{1}$ : Single point appended on the RHS (leftmost \& rightmost coincide)
- $\Omega_{\infty}$ : Possibly empty sequence by itself.
- $\Omega_{10}$ : Point followed by a (possibly empty) sequence above.
- $\Omega_{01}$ : Point preceded by a (possibly empty) sequence below.
- $\Omega_{11}$ : Point followed by a (possibly empty) sequence followed by another point.

Apply $\Omega_{11}$ to a class $\mathcal{C}=X_{1} X_{2} X_{3}^{*} X_{4}$


## Apply $\Omega_{11}$ to a class $\mathcal{C}=X_{1} X_{2} X_{3}^{*} X_{4}$



Appending a monotone decreasing class


Appending on the left



## Putting it all together

Consider $\mathcal{C} \mid \operatorname{Av}(21)$.

$$
\mathcal{F}=\mathcal{E}+\mathcal{M}+\frac{\Omega_{1}\left(\overline{\mathcal{C}}^{*}\right)+\Omega_{11}\left(\overline{\mathcal{C}}^{*}\right)}{\mathcal{Z}}
$$

- Either empty, or non-empty increasing, or non-empty $\mathcal{C}$ next to non-empty $\operatorname{Av}(21)$.
- Need phantom points, hence $\overline{\mathcal{C}}$.
- Need to track rightmost points only, so $\mathcal{C}^{*}$.
- Need to remove the phantom point after we're done, hence $1 / \mathcal{Z}$ in the last term.
In general more complicated, but same ideas.


## Things to notice

- algorithmic approach $\rightarrow$ can be automated
- it's constructive: can enumerate (provide g.f. for) every such $1 \times n$ grid class
- rational? D-finite?
- $n \times m$ acyclic grid classes?
- etc.
M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter. Geometric grid classes of permutations.
Transactions of the American Mathematical Society, 365(11):5859-5881, 2013.

宔
D. I. Bevan.

Growth rates of permutation grid classes, tours on graphs, and the spectral radius.
Transactions of the American Mathematical Society, 367(8):5863-5889, 2015.
D. I. Bevan.

On the growth of permutation classes.
PhD thesis, The Open University, 2015.

