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View permutations as drawings
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Enumerating permutation classes

Class
Collection of permutations closed under containment (if π ∈ C,
then all subpermutations σ ⊂ π are also in C).

Enumeration
Determining the number of permutations of each length in C.
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Context-free class

Definition
A class C is context-free if it coincides with the first component of
the system of equations

S1 = f1(Z,S1, . . . ,Sr )
...

Sr = fr (Z,S1, . . . ,Sr )

where fi are constructors only involving +, ×, and E = ∅.
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Context-free class: example

S = Z +
S⊕

S
+

S

S	

S	 = Z +
S⊕

S

S⊕ = Z +
S

S	

S = Z + S⊕S + S	S
S	 = Z + S⊕S
S⊕ = Z + S	S,
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Context-free classes are nice

Many things are context-free, e.g.

finitely many simples =⇒ context-free

Shades of niceness

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic ⊂ power series

Theorem (Chomsky-Schützenberger)

A combinatorial class C that is context-free admits an algebraic
generating function.
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Grid classes

Definition
Permutation grid class is a permutation class. It consists of
permutations that can be chopped up by vertical and horizontal
lines into sub-permutations belonging to designated classes.

belongs to

[
Av(12) Av(21)
Av(12) Av(21)

]
.

7 / 28



Grid classes

Definition
Permutation grid class is a permutation class. It consists of
permutations that can be chopped up by vertical and horizontal
lines into sub-permutations belonging to designated classes.

belongs to

[
Av(12) Av(21)
Av(12) Av(21)

]
.

7 / 28



Grid classes

Definition
Permutation grid class is a permutation class. It consists of
permutations that can be chopped up by vertical and horizontal
lines into sub-permutations belonging to designated classes.

belongs to

[
Av(12) Av(21)
Av(12) Av(21)

]
.

7 / 28



Example: where the trouble lies

2615743 is in Av(321) Av(12) as witnessed by the middle two
partitions.

No! Yes! Yes! No!
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We can’t enumerate this

C11 C12 C13

C21 C22 C23

C31 C32 C33

...
. . .

. . .

Cn1 Cn2 Cn3

C1m

C2m

C3m

Cnm

Even if Cij are permutation classes that we CAN enumerate
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. . . or this

M M M M

M M C M

M M M M

...
. . .

. . .

M M M

M

M

M

M

M monotone classes, C non-monotone class
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. . . actually, not even this

M M M M

M M M M

M M M M

...
. . .

. . .

M M M

M

M

M

M

M monotone classes
But! we know their growth rates = (spectral radius)2 of the

row-column graph [Bev15a].
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. . . also . . .

these have rational generating functions [AAB+13]

Geom



M M M M

M M M M

M M M M

...
. . .

. . .

M M M

M

M

M

M
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. . . and . . .

generating functions conjectured for monotone increasing
strips [Bev15b]

. . .
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Today

M1 · · · Mk C Mk+1 · · · Mk+l

Theorem
Let C be a context-free permutation class that admits a
combinatorial specification which tracks both the right-most and
the left-most points. Let Mi be a sequence of n − 1 monotone
permutation classes. Then M1| . . . |Mk |C|Mk+1| . . . |Mk+` is a
context-free permutation class that admits an algebraic generating
function.
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Leftmost gridlines

Griddable → gridded

Convention:
Let π be a permutation from C1|C2. The gridline in π is chosen to
be the left-most possible. I.e. if it was any further left, the
sub-permutation to the right of it would not belong to the
designated class C2.
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Leftmost gridlines: example C|Av(21)
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Gaps associated with points

y

x

The gap associated with x is the space on the RHS below x and
above the next point below it on the LHS.
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What we want to do: example

Enumerate Av(21|21|21). Append cells from left to right.

1. Start with a single increasing sequence on the LHS.

2. Now append stuff on the RHS.

3. Finally, append the third cell.
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Tracking the rightmost point
The rightmost point of C is critical. So pick the combinatorial
specification of C that tracks the rightmost point.

S∗ = Z∗ +
S⊕

S∗
+

S∗

S	

S = Z +
S⊕

S
+

S

S	

S	 = Z +
S⊕

S

S⊕ = Z +
S

S	

S∗ = Z∗ + S⊕S∗ + S∗S	
S = Z + S⊕S + SS	
S	 = Z + S⊕S
S⊕ = Z + SS	.
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Operators

Consider Ω1, an operator that appends a single point on the right
of a class Tm = X1 . . .Xm (bottom to top).

Ω1(Z) = Z∗Z
Ω1(Z∗) = Z∗Z

Ω1(Tm) =

{
Ω1(X ∗1 )Ω0(X2 · · ·Xm) if k = 1

Ω1(X1)Ω0(X2 · · ·Xm) + Ω0(X1)Ω1(X2 · · ·Xm), if k > 1.

Z/Z∗ Ω1

Z
Z∗
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The beast operator

Ω11 is the most involved operator – placing a sequence on the RHS
with designated bottom and top point.

Z/Z∗ Ω11

Z
Z∗

ME

Z
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All operators

We need the following information captured when appending
sequences on the RHS.

I Ω0: Nothing appended on the RHS.

I Ω1: Single point appended on the RHS (leftmost & rightmost
coincide)

I Ω∞: Possibly empty sequence by itself.

I Ω10: Point followed by a (possibly empty) sequence above.

I Ω01: Point preceded by a (possibly empty) sequence below.

I Ω11: Point followed by a (possibly empty) sequence followed
by another point.
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Apply Ω11 to a class C = X1X2X
∗
3 X4

p
X4

X ∗3
X2

X1

Ω11(X1)X2X3X4Z

p
X4

X ∗3
X2

X1

X1Ω11(X2)X3X4Z

p
X4

X ∗3
X2

X1

X1X2Ω11(X∗3 )X4Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω01(X2)X3X4Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω∞(X2)Ω01(X∗3 )X4Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω∞(X2X
∗
3 )Ω01(X4)Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω∞(X2X
∗
3 X4)Ω01(Z)

p
X4

X ∗3
X2

X1

X1Ω10(X2)Ω01(X∗3 )X4Z

p
X4

X ∗3
X2

X1

X1Ω10(X2)Ω∞(X∗3 )Ω01(X4)Z
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Apply Ω11 to a class C = X1X2X
∗
3 X4

p
X4

X ∗3
X2

X1

X1Ω10(X2)Ω∞(X∗3 X4)Ω01(Z)

p
X4

X ∗3
X2

X1

X1X2Ω10(X∗3 )Ω01(X4)Z

p
X4

X ∗3
X2

X1

X1X2Ω10(X∗3 )Ω∞(X4)Ω01(Z)
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Appending a monotone decreasing class

q

C4

C∗3
C2

C1

x

v

y

Θ : ∗ 7→ ∗, q 7→ p

p

H4

H3

H∗2
H1

x

v

y
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Appending on the left

p

C4

C∗3
C◦2

C1

a
b

w

z

Φ : ∗ 7→ ◦

p

C4

C∗3
C◦2

C1

a
b

w

z
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Putting it all together

Consider C|Av(21).

F = E +M+
Ω1(C∗) + Ω11(C∗)

Z

I Either empty, or non-empty increasing, or non-empty C next
to non-empty Av(21).

I Need phantom points, hence C.

I Need to track rightmost points only, so C∗.
I Need to remove the phantom point after we’re done, hence

1/Z in the last term.

In general more complicated, but same ideas.
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Things to notice

I algorithmic approach → can be automated

I it’s constructive: can enumerate (provide g.f. for) every such
1× n grid class

I rational? D-finite?

I n ×m acyclic grid classes?

I etc.
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