Juxtaposing Catalan classes with monotone ones

Jakub Sliačan (joint work with Robert Brignall)

Permutation Patterns 2017

View permutations as drawings

635814972

Enumerating permutation classes

Class
Collection of permutations closed under containment (if $\pi \in \mathcal{C}$, then all subpermutations $\sigma \subset \pi$ are also in \mathcal{C})

Enumeration
Determining the number of permutations of each length in \mathcal{C}

Goal: enumerate simple juxtaposition classes

Catalan class

A class of permutations that avoid one of the length 3 patterns: $123,132,213,231,312,321$.
$\operatorname{Av}(a b c \mid x y)=\operatorname{Cat} \mathcal{M}$
Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be permutation classes. Their juxtaposition $\mathcal{C}=\mathcal{C}_{1} \mid \mathcal{C}_{2}$ is the class of all permutations that can be partitioned such that the left part is a pattern from \mathcal{C}_{1} and the right part is the pattern from \mathcal{C}_{2}.
Interested in: $\mathcal{C}_{1}=$ Catalan class, $\mathcal{C}_{2}=$ Monotone class.

Example: $2615743 \in \operatorname{Av}(321 \mid 12)$, witnessed by the middle two partitions.

No!

Yes!

Yes!

No!

Today

$$
\begin{aligned}
& \operatorname{Av}(213 \mid 21), \underline{\operatorname{Av}(231 \mid 12)} \stackrel{\theta}{\longleftrightarrow} \quad \underline{\operatorname{Av}(321 \mid 12)}, \operatorname{Av}(123 \mid 21) \\
& \operatorname{Av}(123 \mid 12), \operatorname{Av}(\mathbf{3 2 1 | 2 1)} \stackrel{\psi}{\longleftrightarrow} \quad \operatorname{Av}(231 \mid 21), \operatorname{Av}(213 \mid 12) \\
& \operatorname{Av}(132 \mid 12), \underline{\operatorname{Av}(\mathbf{3 1 2 | 2 1})} \stackrel{\phi}{\longleftrightarrow} \quad \operatorname{Av}(312 \mid 12), \operatorname{Av}(132 \mid 21)
\end{aligned}
$$

Enumerated by Bevan and Miner, respectively
Enumerated (here)
Bijections θ, ψ, ϕ between underlined classes (given here)

Why these juxtapositions?

Because they show up, e.g.

- Bevan enumerated $\operatorname{Av}(231 \mid 12)$ (or its symmetry) as a step to enumerating $\operatorname{Av}(4213,2143)$.
- Miner enumerated $\operatorname{Av}(123 \mid 21)$ (or its symmetry) as a step to enumerating $\operatorname{Av}(4123,1243)$.

Because they are "simplest" grid classes

- Murphy, Vatter (2003)
- Albert, Atkinson, and Brignall (2011)
- Vatter, Watton (2011)
- Brignall (2012)
- Albert, Atkinson, Bouvel, Ruškuc, and Vatter (2013)
- Bevan (2016)

We can't enumerate this

\mathcal{C}_{11}	\mathcal{C}_{12}	\mathcal{C}_{13}		
\mathcal{C}_{21}	\mathcal{C}_{22}	\mathcal{C}_{23}		
\mathcal{C}_{31}	\mathcal{C}_{32}	\mathcal{C}_{33}		

	$\mathcal{C}_{1 m}$	
	$\mathcal{C}_{2 m}$	
\cdots	$\mathcal{C}_{3 m}$	
		-

$$
\begin{array}{ll|l}
\mathcal{C}_{n 1} & \mathcal{C}_{n 2} & \mathcal{C}_{n 3} \\
\hline
\end{array}
$$

$$
\mathcal{C}_{n m}
$$

Even if $\mathcal{C}_{i j}$ are permutation classes that we CAN enumerate

... or this

\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{C}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}		\cdots	\mathcal{M}
		\vdots			\ddots	
\mathcal{M}	\mathcal{M}	\mathcal{M}				\mathcal{M}

\mathcal{M} monotone classes, \mathcal{C} non-monotone class

... actually, not even this

\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}		\cdots	\mathcal{M}
						\vdots
\mathcal{M}	\mathcal{M}	\mathcal{M}				

\mathcal{M} monotone classes
But! we know their growth rates $=(\text { spectral radius })^{2}$ of the row-column graph [Bev15a].
these have rational generating functions $\left[\mathrm{AAB}^{+} 13\right]$

generating functions conjectured for monotone increasing strips [Bev15b]

generating functions conjectured for monotone increasing strips [Bev15b]

Idea: be less ambitious

So...

Enumerate juxtapositions of monotone and Catalan cells

We'll look at the blue parts

$$
\begin{array}{lll}
\operatorname{Av}(213 \mid 21), \underline{\operatorname{Av}(\mathbf{2 3 1} \mid \mathbf{1 2)}} & \stackrel{\theta}{\longleftrightarrow} & \operatorname{Av}(123 \mid 21), \underline{\operatorname{Av}(321 \mid 12)} \\
\operatorname{Av}(123 \mid 12), \underline{\operatorname{Av}(\mathbf{3 2 1} \mid \mathbf{2 1)}} & \stackrel{\psi}{\longleftrightarrow} & \operatorname{Av}(213 \mid 12), \underline{\operatorname{Av}(231 \mid 21)} \\
\operatorname{Av}(132 \mid 12), \underline{\operatorname{Av}(\mathbf{3 1 2} \mid \mathbf{2 1)}} & \stackrel{\phi}{\longleftrightarrow} & \operatorname{Av}(132 \mid 21), \underline{\operatorname{Av}(312 \mid 12)}
\end{array}
$$

Dyck paths

Dyck path

A Dyck path of length $2 n$ is a path on the integer grid from top right to bottom left. Each step is either Down (D) or Left (L) and the path stays below the diagonal.

Example

231-avoiders and Dyck paths

231-avoiders and Dyck paths

								\bullet
\bullet								
			\bullet					
					\bullet			
							\bullet	
						\bullet		
				\bullet				
	\bullet							
		\bullet						

231-avoiders and Dyck paths

321-avoiders and Dyck paths

321-avoiders and Dyck paths

								\bullet
					\bullet			
			\bullet					
	\bullet							
							\bullet	
						\bullet		
				\bullet				
$\boldsymbol{\bullet}$								
		\bullet						

321-avoiders and Dyck paths

Context-free grammars

Definition

A context-free grammar (CFG) is a formal grammar that describes a language consisting of only those words which can be obtained from a starting string by repeated use of permitted production rules/substitutions.

Example: Catalan class by itself (as a CFG)

- variables: C
- characters: $\epsilon, \mathrm{D}, \mathrm{L}$
- relations: $C \rightarrow \epsilon \mid$ DCLC

This gives the following equation:

$$
c=1+z c^{2} .
$$

$\operatorname{Av}(231 \mid 12)$ - gridline greedily right

griddable \rightarrow gridded

Av(231|12) - decorating Dyck paths

- insert point sequences under vertical steps
- first sequence (from top) under first vertical step after a horizontal step occured - first 12 occured

$\operatorname{Av}(231 \mid 12)$ - context-free grammar

L - left step
D - down step before any left steps occured
D - down step after left step already occured
We denote by \mathbf{C} a Dyck path over letters L and \mathbf{D}, while C is a standard Dyck path over L and D.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \epsilon \mid \mathrm{DSLC} \\
& \mathrm{C} \rightarrow \epsilon \mid \mathrm{DCLC}
\end{aligned}
$$

$$
\begin{aligned}
& s=1+z s \mathbf{c} \\
& \mathbf{c}=1+t z \mathbf{c}^{2}
\end{aligned}
$$

$\operatorname{Av}(321 \mid 21)$ and $\operatorname{Av}(312 \mid 21)$ "similar".

Articulation point

common black part, unique red parts

Bijection $\theta: \operatorname{Av}(231 \mid 12) \rightarrow \operatorname{Av}(321 \mid 12)$

Idea
Choose a good bijection $\theta_{0}: \operatorname{Av}(231) \rightarrow \operatorname{Av}(321)$. Then extend it to θ by preserving the RHS.

Bijection $\phi: \operatorname{Av}(312 \mid 21) \rightarrow \operatorname{Av}(312 \mid 12)$

Dyck paths \mathcal{P} representing $\operatorname{Av}(312)$.

Recipe

1. Decompose \mathcal{P} into excursions: $\mathcal{P}_{1} \oplus \cdots \oplus \mathcal{P}_{k}$.
2. Identify middle part \mathcal{P}_{i}. Where pts on the RHS start.
3. Construct \mathcal{P}^{\prime} as: $\mathcal{P}_{i+1} \oplus \cdots \oplus \mathcal{P}_{n} \oplus \mathcal{P}_{i} \oplus \mathcal{P}_{1} \oplus \cdots \oplus \mathcal{P}_{i-1}$
4. Substitute \mathcal{P}_{i}^{\prime} for \mathcal{P}_{i}, where the order of vertical steps in \mathcal{P}_{i}^{\prime} is reversed (together with sequences of points on the RHS that go with those vertical steps).

Reversible and resulting Dyck path corresponds to a permutation from $\operatorname{Av}(312 \mid 12)$.

Summary

$$
\begin{array}{lll}
\operatorname{Av}(213 \mid 21), \underline{\operatorname{Av}(\mathbf{2 3 1} \mid \mathbf{1 2)}} & \stackrel{\theta}{\longleftrightarrow} & \operatorname{Av}(123 \mid 21), \underline{\operatorname{Av}(321 \mid 12)} \\
\operatorname{Av}(123 \mid 12), \underline{\operatorname{Av}(\mathbf{3 2 1} \mid \mathbf{2 1)}} & \stackrel{\psi}{\longleftrightarrow} & \operatorname{Av}(213 \mid 12), \underline{\operatorname{Av}(231 \mid 21)} \\
\operatorname{Av}(132 \mid 12), \underline{\operatorname{Av}(\mathbf{3 1 2} \mid \mathbf{2 1)}} & \stackrel{\phi}{\longleftrightarrow} & \operatorname{Av}(132 \mid 21), \underline{\operatorname{Av}(312 \mid 12)}
\end{array}
$$

Next

- non-Catalan juxtaposed with monotone
- iterated juxtapositions of monotone
- 2-dim monotone grid classes without cycles

R M. H. Albert, M. D. Atkinson, and R. Brignall.
The enumeration of permutations avoiding 2143 and 4231.
Pure Mathematics and Applications, 22:87-98, 2011.
圊 M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter. Geometric grid classes of permutations.
Transactions of the American Mathematical Society, 365(11):5859-5881, 2013.

D. I. Bevan.

Growth rates of permutation grid classes, tours on graphs, and the spectral radius.
Transactions of the American Mathematical Society, 367(8):5863-5889, 2015.

D. I. Bevan.

On the growth of permutation classes.
PhD thesis, The Open University, 2015.
D. I. Bevan.

The permutation class $\operatorname{Av}(4213,2143)$.
preprint, arXiv:1510.06328, 2016.
\square R. Brignall.

Grid classes and partial well order.
Journal of Combinatorial Theory. Series A, 119(1):99-116, 2012.
M. M. Murphy and V. Vatter.

Profile classes and partial well-order for permutations.
Electronic Journal of Combinatorics, 9(2), 2003.
V. Vatter and S. Waton.

On partial well-order for monotone grid classes of permutations.
Order, 28:193-199, 2011.

