Permutation packing and Flag Algebras

Jakub Sliačan
The Open University

- H,F,G graphs/permutations
- G is F-free
- $|H|=k,|G|=n$

$$
\mathbf{p}(\mathbf{H}, \mathbf{G})=\frac{\# \text { induced copies of } H \text { in } G}{\binom{n}{k}}
$$

Maximize the density of H in an F-free G.
\mathcal{F} a family of forbidden permutations/graphs

$$
p(H, n)=\max _{\substack{G \text { is } \mathcal{F}-\text { free } \\|G|=n}} p(H, G)
$$

Packing density

$$
p(H)=\lim _{n \rightarrow \infty} p(H, n)
$$

Turán density

$$
p(H, \mathcal{F})=\lim _{n \rightarrow \infty} p(H, \mathcal{F}, n)
$$

Example I

Permutations
Maximize density of 12 in a 123 -free P.
Answer: $\sim 1 / 2$.

Graphs
Maximize the density of \vdots in a \therefore-free G.
Answer: $\sim 1 / 2$.

Example II

Permutations
Minimize the density of monotone subsequences of length 4. Answer: $\binom{\lfloor n / 3\rfloor}{ 4}\left(\begin{array}{c}\lfloor n / 3+1\rfloor\end{array}\right)\left(\begin{array}{c}\lfloor n / 3+2\rfloor\end{array}\right)$ via Flag algebras $\left[\mathrm{BHL}^{+} 15\right]$.

Graphs
Minimize the density of $\vdots+\cdots$.
Notoriously hard. Minimizer is NOT $\mathbb{G}(n, 1 / 2)$ - can do better. Still open!

Example III

Permutations
Maximize the density of 132 permutation.
Answer: $2 \sqrt{3}-3$ (Galvin-Kleitmann, Stromquist).
Digraphs
Maximize the density of \AA.
Answer: $2 \sqrt{3}-3$ ([FRV13]).

Timeline

1992	Wilf @ SIAM	please look at packing densities
1992	Galvin	packing densities exist
1993	Galvin-Kleitmann, Stromquist	132 packing density
1998	Price	PhD thesis, layered patterns
2002	Albert et al.	packing densities of layered patterns (+ LBs for 1342, 2413)
2002	Hästö	packing density of other layered per- mutations
2006	Barton	packing densities of patterns
2008	Presutti	lower bounds for packing non-layered patterns (weighs AAHHS templates)
2010	Presutti-Stromquist	packing rates of measures, LB for 2413
2015	Balogh et al.	Minimum number of monotone 4- point sequences

In particular...

Structural result (Stromquist, [AAH ${ }^{+}$02])

Layered (on top) permutations pack best into layered (on top) permutations.

Must mention:

- Price's algorithm
- Generalization to patterns
- Number of layers - bdd or not
- Presutti-Stromquist permutation limits
- Packing densities of linear combinations with coeffs in \mathbb{N}

Non-layered (before FA):

- $0.1047 \ldots \leq p(\because) \leq 2 / 9$
- $0.1965 \ldots \leq p(\because) \leq 2 / 9$

Small permutations (overview)

3-point packing densities
Done.
4-point packing densities

S	lower bound	ref LB	upper bound	ref UB
1234	1	trivial	1	trivial
1432	$0.42357 \ldots$	$[$ Pri97]	$0.42357 \ldots$	$[$ Pri97 $]$
2143	$3 / 8$	trivial	$3 / 8$	$[$ Pri97]
1243	$3 / 8$	trivial	$3 / 8$	$\left[\mathrm{AAH}^{+} 02\right]$
1324	$\approx 0.244 \ldots$	$[$ Pri97]	$\approx 0.244 \ldots$	$\left[\mathrm{Pri97}^{2}\right]$
1342	$0.1965 \ldots$	$[\mathrm{Bat}]$	$2 / 9$	$\left[\mathrm{AAH}^{+} 02\right]$
2413	$0.104724 \ldots$	$[\mathrm{PS} 10]$	$2 / 9$	$\left[\mathrm{AAH}^{+} 02\right]$

Strategy

First bound
Maximize density of $\boldsymbol{\bullet}$ in a \therefore-free graph.

$$
\begin{aligned}
p(!, G) & =p(\bullet, \therefore) p(\bullet, G)+p(\bullet, \therefore) p(\therefore, G)+p(!, \therefore) p(\therefore, G) \\
& \leq \max \{p(!, \therefore), p(\bullet, \bullet), p(!, \therefore)\}=2 / 3
\end{aligned}
$$

Redistribute weight

$$
p(\mathfrak{i}, G)=\sum_{H \in \mathcal{G}_{k}} p(\mathfrak{i}, H) p(H, G)+\underbrace{\sum_{H \in \mathcal{G}_{k}} c_{H} p(H, G)}_{\geq 0}
$$

$\leq \max _{H \in \mathcal{G}_{k}} p(!, H)+c_{H} \quad / /$ winning if the right c_{H} negative

Magic (flag algebras)

- $\mathcal{G}=\bigcup_{n \geq 0} \mathcal{G}_{n}$ set of all graphs.
- $\mathcal{A}=\mathbb{R} \mathcal{G} / \mathcal{K}$, where \mathcal{K} contains $H-\sum_{H^{\prime} \in \mathcal{G}_{k}} p\left(H, H^{\prime}\right) H^{\prime}$.
- $H_{1} \cdot H_{2}:=\sum_{H} p\left(H_{1}, H_{2} ; H\right) H$ (now \mathcal{A} is an algebra).
- $\left(G_{n}\right)_{n}$ convergent if $\left(p\left(H, G_{n}\right)\right)_{n}$ converges for every H.
- Every $\left(G_{n}\right)_{n}$ has convergent subsequence (Tychonoff).
- Associate convergent $\left(G_{n}\right)_{n}$ with $\phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})$.
- Averaging: $H^{\sigma} \in \mathcal{A}^{\sigma}, \llbracket H^{\sigma} \rrbracket_{\sigma}=p_{H}^{\sigma} H$.
- For every $\phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})$ and every $h^{\sigma} \in \mathcal{A}^{\sigma}$,

$$
\phi\left(\llbracket h^{\sigma} \rrbracket_{\sigma}\right) \geq 0 .
$$

- Semi-definite programming, additional info comes from:

$$
\phi\left(\llbracket \mathbf{x}^{T} Q \mathbf{x} \rrbracket\right) \geq 0, \quad Q \succeq 0
$$

where $\mathbf{x}_{i} \in \mathcal{A}^{\sigma}$.

Permpack package

Sage package automating flag algebras for permutations.

```
https://github.com/jsliacan/permpack.git
```

Ingredients

- Razborov's Flag Algebras [Raz07]
- Sage-7.2 (SageMath.org)
- CSDP (COIN|OR project)

What to expect

- Maximize packing density for $\pi=\sum_{i=1}^{k} a_{i} P_{i}$, some k.
- Compute Turán density for finite \mathcal{F} and π
- Handle inequality constraints, i.e. $\bullet \geq 1 / 3$

Permpack example I

Listing 1: Packing 132

```
p = PermProblem(3, density_pattern="132")
p.solve_sdp(solver="csdp")
```


Listing 2: Output

```
Success: SDP solved
Primal objective value: -4.6410162e-01
Dual objective value: -4.6410162e-01
Relative primal infeasibility: 5.90e-14
Relative dual infeasibility: 1.67e-10
Real Relative Gap: 3.68e-10
XZ Relative Gap: 6.14e-10
```


Permpack example II

Listing 3: Packing 123 subject to $132 \geq 1 / 3$.

```
p = PermProblem(3, density_pattern="123")
p.add_assumption([("132",1)], 1/3)
p.solve_sdp(solver="csdp")
```


Listing 4: Output

Success: SDP solved

```
Primal objective value: -5.9221808e-01
```

Dual objective value: $-5.9221809 \mathrm{e}-01$
Relative primal infeasibility: 3.14e-15
Relative dual infeasibility: 2.48e-09
Real Relative Gap: -9.65e-10
XZ Relative Gap: 4.52e-09

After Flag Algebras

S	lower bound	ref LB	upper bound	ref UB
1234	1	trivial	1	trivial
1432	α	$[$ Pri97]	α	$[$ Pri97]
2143	$3 / 8$	trivial	$3 / 8$	$[$ Pri97]
1243	$3 / 8$	trivial	$3 / 8$	$\left[\mathrm{AAH}^{+} 02\right]$
1324	0.244054321	construction Γ	0.244054549	Flagmatic 2.0
1342	β	$[B a t]$	$0.1988373 \ldots$	$\left[\mathrm{BHL}^{+} 15\right]$
2413	≈ 0.104724	$[\mathrm{PS} 10]$	$0.1047805 \ldots$	$\left[\mathrm{BHL}^{+} 15\right]$

All known upper bounds can be re-proved via FA.

The curious case of 1342

Batkeyev, [BHL $\left.{ }^{+} 15\right]$

$$
0.1965 \ldots=p(\therefore, \Gamma) \leq \therefore \leq 0.1988 \ldots
$$

Theorem

$$
\text { If } \because=0 \text {, then } \because \leq 0.19658 \ldots
$$

Various non-layered densities

All bounds are matched from below by constructions on the left.

$$
1 /
$$

$$
\begin{aligned}
& \therefore \leq 0.16039 \ldots \\
& \because \leq 0.153649 \ldots \\
& \because \leq 0.16515 \ldots \quad \text { [Häs02]: }[k, 1, k], k \geq 3 \\
& \because \because \because \dot{\because}=(2 \sqrt{3}-3)^{2} \frac{6!}{48^{2}} \leq 0.0673094 \\
& \because \leq 0.123456 \ldots
\end{aligned}
$$

Things to think about

Do theorems about layered permutations extend to sums of sum-indecomposable blocks?

Is there a \therefore-maximizer that does not contain \because with positive density?

Which sub-permutation densities force G to be pseudo-random?

Michael H. Albert, Mike D. Atkinson, Chris C. Handley, Derek A. Holton, and Walter Stromquist. On packing densities of permutations.
Electron. J. Combin, 9(1), 2002.
B. Batkeyev.

Extremal construction for 1342-packing.
unpublished.
J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari, and J. Volec.

Minimum number of monotone subsequences of length 4 in permutations.
Combinatorics, Probability and Computing, 24(04):658-679, 2015.
V. Falgas-Ravry and E. R. Vaughan.

Applications of the semi-definite method to the turán density problem for 3-graphs.
Combinatorics, Probability and Computing, 22(01):21-54, 2013.
P. A. Hästö.

The packing density of other layered permutations.
Electron. J. Combin, 9(2), 2002.
A. L. Price.

Packing densities of layered* patterns.
PhD thesis, University of Pennsylvania, 1997.
C. B. Presutti and W. Stromquist.

Packing rates of measures and a conjecture for the packing density of 2413.
Permutation patterns, 376:287-316, 2010.

A. A. Razborov.

Flag algebras.
The Journal of Symbolic Logic, 72(04):1239-1282, 2007.

