Residual-based Gauss-Seidel method

Jakub Sliacan supervised by Prof. Peter Oswald at JUB

Max-Planck Institut für Informatik

Problem

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

Problem			Outlook

Problem

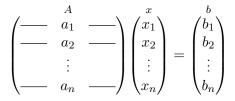
- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

Problem			Outlook
Notatio	n		

$$\begin{pmatrix} A & & \\ a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x \\ x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b \\ b_1 \\ \vdots \\ b_n \end{pmatrix}$$

In terms of rows



Problem			Outlook

Given

 $A \in \mathbb{R}^{n \times n} \text{ spd}, \ b \in \mathbb{R}^n$

Problem			Outlook

Given

$$A \in \mathbb{R}^{n \times n}$$
 spd, $b \in \mathbb{R}^n$

Find

 $x \in \mathbb{R}^n$ which solves Ax = b

Problem			Outlook

Given

 $A \in \mathbb{R}^{n \times n} \text{ spd}, \ b \in \mathbb{R}^n$

Find

 $x \in \mathbb{R}^n$ which solves Ax = b

▶ Why such restriction on *A*?

Problem			Outlook

Given

 $A \in \mathbb{R}^{n \times n} \text{ spd}, \ b \in \mathbb{R}^n$

Find

 $x \in \mathbb{R}^n$ which solves Ax = b

Why such restriction on A?

- spd matrices arise from applications
- minimization problems
- structural engineering, circuit simulations, compressed sensing, nuclear reactor diffusion, oil reservoir modelling [3]

Problem			Outlook

Given

 $A \in \mathbb{R}^{n \times n} \text{ spd}, \ b \in \mathbb{R}^n$

Find

 $x \in \mathbb{R}^n$ which solves Ax = b

Why such restriction on A?

- *spd* matrices arise from applications
- minimization problems
- structural engineering, circuit simulations, compressed sensing, nuclear reactor diffusion, oil reservoir modelling [3]
- \implies tailored methods perform better

1 Intro		Outlook

Problem

1. Introduction

- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

1 Intro		Outlook

History of Iterative methods

1840s	Jacobi	Jacobi method
1870s	Seidel	Gauss-Seidel method
1910s	Richardson	Richardson's method
1930s	Temple	Method of steepest descend
1940s	Young & Frankel	Successive over-relaxation method (SOR)
1950s	Hestenes & Stiefel	Conjugate gradient method

Table: Approximate timeline: invention of major iterative methods

	1 Intro		Outlook
	(II)		
Jacobi	(cyclic)		

Update rule

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right]$$

1 sweep through all equations = 1 step

1 Intro		Outlook

Gauss-Seidel (cyclic)

Update rule

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right]$$

using most recent values of \boldsymbol{x} saves memory

1 Intro		Outlook

"Relaxed" Gauss-Seidel (cyclic)

Auxiliary $\tilde{x}^{(k+1)}$

$$a_{ii}\tilde{x}_{i}^{(k+1)} = \left[b_{i} - \sum_{j=1}^{i-1} a_{ij}x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k)}\right]$$

Idea of relaxation applied

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \omega \tilde{x}_i^{(k+1)} = x_i^{(k)} + \omega (\tilde{x}_i^{(k+1)} - x_i^{(k)})$$

Update rule

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - a_{ii} x_i^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right]$$

1 Intro		Outlook

GS-Southwell (non-cyclic)

Update rule

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - a_{ii} x_i^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right]$$

equation to update is NOT the next one, but is picked based on the size of residual

	2 GSS		Outlook

Problem

1. Introduction

2. GS-Southwell(GSS)

- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

Update rule simplified:

$$a_{ii}x_i^{new} = a_{ii}x_i + \omega \left(-\sum_{j < i} a_{ij}x_j - a_{ii}x_i - \sum_{j > i} a_{ij}x_j \right)$$
$$x_i^{new} = x_i + \omega \left(-a_ix + b_i \right)$$

In the language of residuals:

$$r = b - Ax \implies x_i^{new} = x_i + \frac{\omega}{a_{ii}}r_i$$

	2 GSS		Outlook

Choose equation to update

Update:
$$x_{i^*}^{new} = x_{i^*} + \frac{\omega}{a_{i^*i^*}}r_{i^*}$$

	2 GSS		Outlook

Choose equation to update

Update:
$$x_{i^*}^{new} = x_{i^*} + \frac{\omega}{a_{i^*i^*}} r_{i^*}$$

1. Classical GS

$$i^{*} + +$$

2. GS-Southwell:

$$|r_{i^*}| \ge \beta \cdot ||r||_{\infty}, \quad 0 < \beta \le 1$$

	2 GSS		Outlook

Summary of GSS procedure

1. (Compute the residual)

$$r^{(k)} = b - Ax^{(k)}$$

2. (Choose i^*) $|r_{i^*}^{(k)}| \geq \beta \max_i \left\{ |r_i^{(k)}| \right\}$ 3. (Update)

$$x_{i^*}^{(k+1)} = x_{i^*}^{(k)} + \frac{\omega}{a_{i^*i^*}} r_{i^*}^{(k)}$$

	2 GSS		Outlook

$$e^{(k)} = x - x^{(k)}, \quad a_{ii}^* = \max_i \{a_{ii}\}, \quad \tilde{r}_i = (0 \dots r_i \dots 0)^T$$
$$e^{(k+1)} - e^{(k)} = -\frac{\omega}{a_{i^*i^*}} \tilde{r}_{i^*}^{(k)} \tag{1}$$

	2 GSS		Outlook

$$e^{(k)} = x - x^{(k)}, \quad a_{ii}^* = \max_i \{a_{ii}\}, \quad \tilde{r}_i = (0 \dots r_i \dots 0)^T$$
$$e^{(k+1)} - e^{(k)} = -\frac{\omega}{a_{i^*i^*}} \tilde{r}_{i^*}^{(k)} \tag{1}$$

$$||e^{(k+1)}||_{A}^{2} = ||e^{(k)}||_{A}^{2} - \frac{\omega(2-\omega)}{a_{i^{*}i^{*}}} \left(r_{i^{*}}^{(k)}\right)^{2}$$
(2)

	2 GSS		Outlook

$$e^{(k)} = x - x^{(k)}, \quad a_{ii}^* = \max_i \{a_{ii}\}, \quad \tilde{r}_i = (0 \dots r_i \dots 0)^T$$
$$e^{(k+1)} - e^{(k)} = -\frac{\omega}{a_{i^*i^*}} \tilde{r}_{i^*}^{(k)} \tag{1}$$

$$||e^{(k+1)}||_{A}^{2} = ||e^{(k)}||_{A}^{2} - \frac{\omega(2-\omega)}{a_{i^{*}i^{*}}} \left(r_{i^{*}}^{(k)}\right)^{2}$$
(2)

$$\left(e^{(k)}, e^{(k)}\right)_{A}^{2} \le n\beta^{-2} \left(r_{i^{*}}^{(k)}\right)^{2} \left(e^{(k)}, e^{(k)}\right)_{A}$$
 (3)

	2 GSS		Outlook

$$e^{(k)} = x - x^{(k)}, \quad a_{ii}^* = \max_i \{a_{ii}\}, \quad \tilde{r}_i = (0 \dots r_i \dots 0)^T$$
$$e^{(k+1)} - e^{(k)} = -\frac{\omega}{a_{i^*i^*}} \tilde{r}_{i^*}^{(k)} \tag{1}$$

$$||e^{(k+1)}||_{A}^{2} = ||e^{(k)}||_{A}^{2} - \frac{\omega(2-\omega)}{a_{i^{*}i^{*}}} \left(r_{i^{*}}^{(k)}\right)^{2}$$
(2)

$$\left(e^{(k)}, e^{(k)}\right)_{A}^{2} \le n\beta^{-2} \left(r_{i^{*}}^{(k)}\right)^{2} \left(e^{(k)}, e^{(k)}\right)_{A}$$
 (3)

$$||e^{(k+1)}||_A^2 \le \left(1 - \frac{\omega(2-\omega)\beta^2}{na_{ii}^*}\right)^k \cdot ||e^{(0)}||_A^2 \tag{4}$$

	3 RGS	Outlook

Problem

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

		3 RGS	Outlook
Trade-o	off		

classical GS | GS-Southwell computationally cheap | faster convergence

		3 RGS	Outlook
Trade-o	off		

classical GS | GS-Southwell computationally cheap | faster convergence

$1. \ \mbox{combine}$ the advantages of both methods

		3 RGS	Outlook
Trade-o	off		

classical GS | GS-Southwell computationally cheap | faster convergence

- 1. combine the advantages of both methods
- greedy is only locally optimal (even if largest residual not chosen every time, we may perform well)

		3 RGS	Outlook
RGS alg	gorithm		

This version is unrelated to the GSS method. For now, focus on costs minimization.

1. (Choose i^*) $\forall i \in \{1, \ldots, n\}$ we have

$$\mathbb{P}[i^* = i] = p_i$$

2. (Compute the residual)

$$r_{i^*}^{(k)} = b_{i^*} - \left(Ax^{(k)}\right)_{i^*}$$

3. (Update)

$$x_{i^*}^{(k+1)} = x_{i^*}^{(k)} + \frac{\omega}{a_{i^*i^*}} r_{i^*}^{(k)}$$

		3 RGS	Outlook
RGS al	gorithm		

This version is unrelated to the GSS method. For now, focus on costs minimization.

1. (Choose i^*) $\forall i \in \{1, \ldots, n\}$ we have

$$\mathbb{P}[i^* = i] = p_i$$

2. (Compute the residual)

$$r_{i^*}^{(k)} = b_{i^*} - \left(Ax^{(k)}\right)_{i^*}$$

3. (Update)

$$x_{i^*}^{(k+1)} = x_{i^*}^{(k)} + \frac{\omega}{a_{i^*i^*}} r_{i^*}^{(k)}$$

- compute only necessary
- store only necessary

	3 RGS	Outlook

Need to know two things

1. converges?

	3 RGS	Outlook

Need to know two things

- 1. converges?
- 2. (if yes) how fast?

	3 RGS	Outlook

Need to know two things

- 1. converges?
- 2. (if yes) how fast?

One never knows for "sure"

		3 RGS	Outlook
_			

Need to know two things

- 1. converges?
- 2. (if yes) how fast?

One never knows for "sure"

 $1. \ then \ best \ we \ can \ do \ is \ converge \ almost \ surely$

		3 RGS	Outlook
_			

Need to know two things

- 1. converges?
- 2. (if yes) how fast?

One never knows for "sure"

- 1. then best we can do is converge **almost** surely
- 2. we can also expect good error reduction at every step

	3 RGS	Outlook

Establishing convergence of RGS I

Theorem (1)

Assume that the next equation to update is chosen uniformly from the set of all n equations. Let $x^{(0)}$ be the initial guess. Then RGS method converges to the solution x with probability 1.

	3 RGS	Outlook

Lemma $(2^{nd}$ Borel-Cantelli Lemma)

Let E_n be a sequence of independent events in a sample space Ω . Then

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty \quad \Longrightarrow \quad \mathbb{P}\Big(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_m\Big) = 1$$

In other words, if $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty$, then with probability 1 infinitely many of E_n happen.

	3 RGS	Outlook

Theorem (1)

Assume that the next equation to update is chosen uniformly from the set of all n equations. Let $x^{(0)}$ be the initial guess. Then RGS method converges to the solution x with probability 1.

Proof 1.

- ► Let *E_k* be event that at the *k*-th step the equation corresponding to the largest residual is chosen
- ▶ ${E_k}$ independent $\Longrightarrow \sum_{k=1}^{\infty} \mathbb{P}(E_k) = \sum_{k=1}^{\infty} 1/n = \infty$
- Lemma \implies with probability 1, infinitely many of E_k happen

	3 RGS	Outlook

Theorem (2)

Let $x^{(0)}$ be the initial guess. And let $\mathbb{P}[i^* = i] = 1/n$, $\forall i$. Then the size of the relative error reduction in A-norm is

$$\mathbb{E}\left[||e^{(k+1)}||_{A}^{2}\right] \leq \left(1 - \frac{\omega(2-\omega)}{n\kappa(A)}\right) \cdot \mathbb{E}\left[||e^{(k)}||_{A}^{2}\right]$$

Theorem (3)

Let $x^{(0)}$ be the initial guess. And let $\mathbb{P}[i^* = i] = a_{ii}/tr(A)$. Then the size of the relative error reduction in A-norm is

$$\mathbb{E}\left[||e^{(k+1)}||_{A}^{2}\right] \leq \left(1 - \frac{\omega(2-\omega)\lambda_{min}}{tr(A)}\right) \cdot \mathbb{E}\left[||e^{(k)}||_{A}^{2}\right]$$

		3 RGS	Outlook
Proo	f.		

$$||e^{(k+1)}||_{A}^{2} = ||e^{(k)}||_{A}^{2} - \frac{\omega(2-\omega)}{a_{ii}} \left(r_{i}^{(k)}\right)^{2}$$
(5)

$$\mathbb{E}\left[||e^{(k+1)}||_A^2\right] = \mathbb{E}\left[||e^{(k)}||_A^2\right] - \mathbb{E}\left[\frac{\omega(2-\omega)}{a_{ii}}\left(r_i^{(k)}\right)^2\right] \quad (6)$$

$$\mathbb{E}\left[||e^{(k+1)}||_A^2\right] = \mathbb{E}\left[||e^{(k)}||_A^2\right] - \omega(2-\omega)\sum_{i=1}^n \left(\frac{\left(r_i^{(k)}\right)^2}{a_{ii}} \cdot \mathbb{P}[i]\right)$$
(7)

			3 RGS		Outlook
•	0	choice of the p	5	tribution, we	
transf	orm equation	7 into Theore	em 1 or 2.		

Remark: Error reduction depends on tr(A). Often

 $tr(A) \ll n\lambda_{max}$

		5 Testing	Outlook

Problem

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

			5 Testing	Outlook
What c	an he teste	d?		

- 1. How many indices to pick at random?
- 2. What are good starting vectors?

3. . . .

Let k be the number of indices picked at random from the set $\{1, \ldots, n\}$. Then we can search this sample $\{i_1, \ldots, i_k\}$ to find the index corresponding to the largest residual (within the sample).

Remark

RGSS - Randomized Gauss-Seidel method with hint of Southwell.

Combination of RGS and GSS is dependent on k. In particular, RGS = RGSS(1) and GSS = RGSS(n).

		5 Testing	Outlook

Matrix A

Construct A as it was presented in $\ensuremath{\left[2\right]}$ to demonstrate performance of GSS method.

$$A = toeplitz\left(\left[1 \ c_0\left[\frac{1}{1}, \frac{0}{2}, -\frac{1}{3}, \frac{0}{4}, \frac{1}{5}, \frac{0}{6}, \dots\right]\right]\right)$$

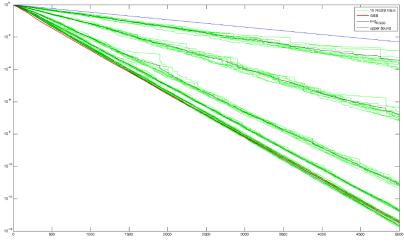
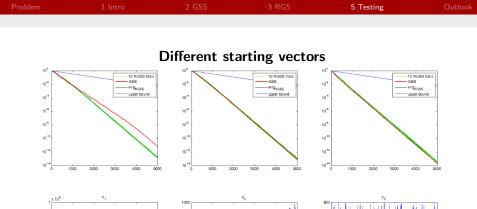


Figure: n = 500, matrix A, $k \in \{1, 2, 4, 6, 8, 10\}$



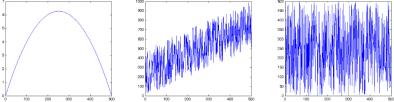


Figure: n = 100, k = 8, matrix A

		Outlook

Problem

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Outlook

			Outlook
What n	ext		

- Various applications (computed tomography, signal processing, etc.) require solutions to an overdetermined but consistent system of equations Ax = b. Kaczmarz method of iterative projections have been found useful. Related to Gauss-Seidel.
- What is optimal size of k?
- What is optimal (or good) choice of the probability distribution for choice of *i**?
- ▶ What is RGSS's robustness to different types of *spd* matrices?

					Outlook
Refere	ences I				
	 T. Strohmer, R.Vershynin, A rans 15: 262 – 278 S. Frankel, Convergence rates of D.M. Young, Iterative methods for Cambridge, MA, USA, 1950 L.F. Richardson, The approximat with an application to the stressee Y. Censor, G. T. Herman, M. Jia Journal of Fourier Analysis and A G.E. Forsythe, Solving linear alge 	Southwell Methods rative solution of linear sy domized Kaczmarz algorit iterative treatments of pr or solving partial different e arithmetical solution by is to a masonry dam, <i>Phi</i> ng, A note on the behavi <i>lpplications</i> , 2009, 15:431 braic equations can be in	ystems in the 20th Century, , thm with exponential converg artial differential equations, A ial equations of elliptic type, finite differences of physical los. Trans. Roy. Soc. London or of the randomized Kaczm; 436 teresting, Bulletin of AMS, 1	J. Comput. Applied. Math., 2000, gence, J. Fourier Anal. Appl., 200 MTAC, 1950, 6575 Ph.D. Thesis, Harvard University, problems involving differential eq Ser, A, 1910, 210:307-357 arz algorithm of Strohmer and Ve	9, uations rshynin,

		Outlook

References II

Y.C. Eldar, D. Needell, Acceleration of Randomized Kaczmarz Method via the Johnson-Lindenstrauss Lemma, http://arxiv.org/abs/1008.4397v2

A.S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell Publishing Company, Johnson, CO, 1964, 102

		Outlook

thank you