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Notation

Aa11 · · · a1n
...

. . .
...

an1 · · · ann


xx1
...
xn

 =

bb1...
bn


In terms of rows

A
a1

a2
...
an


x
x1

x2
...
xn

 =

b
b1
b2
...
bn
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What are we solving?

Given
A ∈ Rn×n spd, b ∈ Rn

Find
x ∈ Rn which solves Ax = b

I spd matrices arise from applications

I minimization problems

I structural engineering, circuit simulations, compressed
sensing, nuclear reactor diffusion, oil reservoir modelling [3]

=⇒ tailor solvers for spd systems
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History of Iterative methods

1840s Jacobi Jacobi method
1870s Seidel Gauss-Seidel method
1910s Richardson Richardson’s method
1930s Temple Method of steepest descend
1940s Young & Frankel Successive over-relaxation method (SOR)
1950s Hestenes & Stiefel Conjugate gradient method

Table: Approximate timeline: invention of major iterative methods
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Jacobi (cyclic)

Update rule

x
(k+1)
i =

1
aii

bi − n∑
j=1,j 6=i

aijx
(k)
j



1 sweep through all equations = 1 step
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Gauss-Seidel (cyclic)

Update rule

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j



using most recent values of x
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“Relaxed” Gauss-Seidel (cyclic)

Auxiliary x̃(k+1)

aiix̃
(k+1)
i =

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j


Idea of relaxation applied

x
(k+1)
i = (1− ω)x(k)

i + ωx̃
(k+1)
i = x

(k)
i + ω(x̃(k+1)

i − x(k)
i )

Update rule

x
(k+1)
i = x

(k)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k+1)
j − aiix

(k)
i −

n∑
j=i+1

aijx
(k)
j
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GS-Southwell (non-cyclic)

Update rule

xnew
i = xi +

ω

aii

bi − i−1∑
j=1

aijxj − aiixi −
n∑

j=i+1

aijxj


equation to update is NOT the next one, but is picked based on
the size of the corresponding residual
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Update rule simplified:

xnew
i = xi +

ω

aii

bi −∑
j<i

aijxj − aiixi −
∑
j>i

aijxj


xnew

i = xi +
ω

aii

(
bi − aix

)
= xi +

ω

aii

(
b−Ax

)
i

In the language of residuals:

r = b−Ax → ri = (b−Ax)i → xnew
i = xi +

ω

aii
ri
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Choose equation to update

Update: xnewi∗ = xi∗ + ω
ai∗i∗

ri∗

1. Classical GS

i∗ + +

2. GS-Southwell:∣∣∣∣ ri∗ai∗i∗

∣∣∣∣ ≥ β

ai∗i∗
· ||r||∞ , 0 < β ≤ 1
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Summary of GSS procedure

1. (Compute the residual)

r(k) = b−Ax(k)

2. (Choose i∗) ∣∣∣∣∣ r(k)
i∗

ai∗i∗

∣∣∣∣∣ ≥ β

ai∗i∗
max

i

{∣∣∣r(k)
i

∣∣∣}
3. (Update)

x
(k+1)
i∗ = x

(k)
i∗ +

ω

ai∗i∗
r
(k)
i∗
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GSS: Proof of Convergence (sketch)

e(k) = x− x(k), a∗ii = maxi{aii}, r̃i = (0 . . . ri . . . 0)T

e(k+1) − e(k) = − ω

ai∗i∗
r̃
(k)
i∗ (1)

||e(k+1)||2A = ||e(k)||2A −
ω(2− ω)
ai∗i∗

(
r
(k)
i∗

)2
(2)

||e(k+1)||2A ≤

1−
ω(2− ω)

(
r
(k)
i∗

)2

ai∗i∗ ||e(k)||2A

 · ||e(k)||2A (3)

||e(k+1)||2A ≤
(

1− ω(2− ω)λmin

tr(A)

)
· ||e(k)||2A (4)
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Trade-off

classical GS GS-Southwell
computationally cheap faster convergence

1. combine the advantages of both methods

2. locally optimal 6= optimal
(even if largest residual not chosen every time, we may perform well)
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RGS algorithm

Resembles GS by simplicity in choice of i∗.
Resembles GSS by not being cyclic.

1. (Choose i∗) ∀i ∈ {1, . . . , n} we have

P[i∗ = i] = pi

2. (Compute the residual)

r
(k)
i∗ = bi∗ −

(
Ax(k)

)
i∗

3. (Update)

x
(k+1)
i∗ = x

(k)
i∗ +

ω

ai∗i∗
r
(k)
i∗

I compute only necessary

I store only necessary
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Performance

Need to know two things

1. converges?

2. (if yes) how fast?

No more certainty

1. almost sure convergence

2. expected error reduction
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Establishing convergence of RGS I

Theorem (1)

Assume that the next equation to update is chosen uniformly from
the set of all n equations. Let x(0) be the initial guess. Then RGS
method converges to the solution x with probability 1.
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Lemma (2nd Borel-Cantelli Lemma)

Let En be a sequence of independent events in a sample space Ω.
Then

∑
n≥1

P(En) =∞ =⇒ P

⋂
n≥1

⋃
m≥n

Em

 = 1

In other words, if
∑∞

n=1 P(En) =∞, then with probability 1
infinitely many of En happen.
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Theorem (1)

Assume that the next equation to update is chosen uniformly from
the set of all n equations. Let x(0) be the initial guess. Then RGS
method converges to the solution x with probability 1.

Proof 1.

I Let Ek be event that at the k-th step the equation
corresponding to the largest residual is chosen

I {Ek} independent =⇒
∑∞

k=1 P(Ek) =
∑∞

k=1 1/n =∞
I Lemma =⇒ with probability 1, infinitely many of Ek happen
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Theorem (2)

Let x(0) be the initial guess. And let P[i∗ = i] = 1/n, ∀i. Then
the size of the relative error reduction in A-norm is

E
[
||e(k+1)||2A

]
≤
(

1− ω(2− ω)λmin

nλmax

)
· E
[
||e(k)||2A

]

Theorem (3)

Let x(0) be the initial guess. And let P[i∗ = i] = aii/tr(A). Then
the size of the relative error reduction in A-norm is

E
[
||e(k+1)||2A

]
≤
(

1− ω(2− ω)λmin

tr(A)

)
· E
[
||e(k)||2A

]
On average, error reduction is the same as in case of greedy GSS.
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Proof.

||e(k+1)||2A = ||e(k)||2A −
ω(2− ω)

aii

(
r
(k)
i

)2
(5)

E
[
||e(k+1)||2A

]
= E

[
||e(k)||2A

]
− E

[
ω(2− ω)

aii

(
r
(k)
i

)2
]

(6)

E
[
||e(k+1)||2A

]
= E

[
||e(k)||2A

]
− ω(2− ω)

n∑
i=1


(
r
(k)
i

)2

aii
· P[i]


(7)
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Depending on the choice of the probability distribution, we
transform equation 7 into Theorem 1 or 2.

Remark: Error reduction depends on tr(A). Often

tr(A)� nλmax
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What can be tested?

1. How many indices to pick at random?

2. What are good starting vectors?

3. . . .

Let k be the number of indices picked at random from the set
{1, . . . , n}. Then we can search this sample {i1, . . . , ik} to find
the index corresponding to the largest residual (within the sample).

Remark
RGSS - Randomized Gauss-Seidel method with hint of Southwell.

Combination of RGS and GSS is dependent on k. In particular,
RGS = RGSS(1) and GSS = RGSS(n).
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Matrix A
Construct A as it was presented in [2] to demonstrate performance
of GSS method.

A = toeplitz

([
1 c0

[
1
1
,
0
2
,
−1
3
,
0
4
,
1
5
,
0
6
, . . .

] ])
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Size of k

Figure: n = 500, matrix A, k ∈ {1, 2, 4, 6, 8, 10}
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Different starting vectors

Figure: n = 100, k = 8, matrix A
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What next?

I Various applications (computed tomography, signal processing,
etc.) require solutions to an overdetermined but consistent
system of equations Ax = b. Kaczmarz method of iterative
projections have been found useful. Related to Gauss-Seidel.

I What is optimal size of k?

I What is optimal (or good) choice of the probability
distribution for choice of i∗?

I What is RGSS’s robustness to different types of spd matrices?
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thank you
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