Residual-based Gauss-Seidel method

Jakub Sliacan supervised by Prof. Peter Oswald

Jacobs University Bremen

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Problem			Outlook

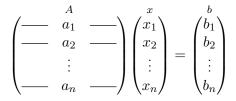
- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

Problem			Outlook
NI			

Notation

$$\begin{pmatrix} A & & \\ a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x \\ x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b \\ b_1 \\ \vdots \\ b_n \end{pmatrix}$$

In terms of rows



Problem			Outlook

What are we solving?

Given

 $A \in \mathbb{R}^{n \times n} \text{ spd}, \ b \in \mathbb{R}^n$

Problem			Outlook

What are we solving?

Given

```
A \in \mathbb{R}^{n 	imes n} spd, b \in \mathbb{R}^n
```

Find

 $x \in \mathbb{R}^n$ which solves Ax = b

- *spd* matrices arise from applications
- minimization problems
- structural engineering, circuit simulations, compressed sensing, nuclear reactor diffusion, oil reservoir modelling [3]

Problem			Outlook

What are we solving?

Given

```
A \in \mathbb{R}^{n 	imes n} spd, b \in \mathbb{R}^n
```

Find

 $x \in \mathbb{R}^n$ which solves Ax = b

- *spd* matrices arise from applications
- minimization problems
- structural engineering, circuit simulations, compressed sensing, nuclear reactor diffusion, oil reservoir modelling [3]
- \implies tailor solvers for spd systems

1 Intro		Outlook

1. Introduction

2. GS-Southwell(GSS)

3. Randomized Gauss-Seidel (RGS)

5. Testing

1 Intro		Outlook

History of Iterative methods

1840s	Jacobi	Jacobi method
1870s	Seidel	Gauss-Seidel method
1910s	Richardson	Richardson's method
1930s	Temple	Method of steepest descend
1940s	Young & Frankel	Successive over-relaxation method (SOR)
1950s	Hestenes & Stiefel	Conjugate gradient method

Table: Approximate timeline: invention of major iterative methods

	1 Intro		Outlook
	(II)		
Jacobi	(cyclic)		

Update rule

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right]$$

1 sweep through all equations = 1 step

1 Intro		Outlook

Gauss-Seidel (cyclic)

Update rule

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right]$$

using most recent values of \boldsymbol{x}

1 Intro		Outlook

"Relaxed" Gauss-Seidel (cyclic)

Auxiliary $\tilde{x}^{(k+1)}$

$$a_{ii}\tilde{x}_{i}^{(k+1)} = \left[b_{i} - \sum_{j=1}^{i-1} a_{ij}x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k)}\right]$$

Idea of relaxation applied

$$x_i^{(k+1)} = (1-\omega)x_i^{(k)} + \omega \tilde{x}_i^{(k+1)} = x_i^{(k)} + \omega (\tilde{x}_i^{(k+1)} - x_i^{(k)})$$

Update rule

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - a_{ii} x_i^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right]$$

1 Intro		Outlook

GS-Southwell (non-cyclic)

Update rule

$$x_{i}^{new} = x_{i} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j} - a_{ii} x_{i} - \sum_{j=i+1}^{n} a_{ij} x_{j} \right]$$

equation to update is NOT the next one, but is picked based on the size of the corresponding residual

	2 GSS		Outlook

1. Introduction

2. GS-Southwell(GSS)

3. Randomized Gauss-Seidel (RGS)

5. Testing

	2 GSS		Outlook

Update rule simplified:

$$x_i^{new} = x_i + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j < i} a_{ij} x_j - a_{ii} x_i - \sum_{j > i} a_{ij} x_j \right]$$
$$x_i^{new} = x_i + \frac{\omega}{a_{ii}} \left(b_i - a_i x \right) = x_i + \frac{\omega}{a_{ii}} \left(b - Ax \right)_i$$

In the language of residuals:

$$r = b - Ax \quad \rightarrow r_i = (b - Ax)_i \quad \rightarrow \quad x_i^{new} = x_i + \frac{\omega}{a_{ii}}r_i$$

	2 GSS		Outlook

Choose equation to update

Update:
$$x_{i^*}^{new} = x_{i^*} + \frac{\omega}{a_{i^*i^*}} r_{i^*}$$

1. Classical GS

$$i^{*} + +$$

2. GS-Southwell:

$$\left|\frac{r_{i^*}}{a_{i^*i^*}}\right| \ge \frac{\beta}{a_{i^*i^*}} \cdot ||r||_{\infty}, \quad 0 < \beta \le 1$$

	2 GSS		Outlook

Summary of GSS procedure

1. (Compute the residual)

$$r^{(k)} = b - Ax^{(k)}$$

2. (Choose i^*)

$$\left|\frac{r_{i^*}^{(k)}}{a_{i^*i^*}}\right| \ge \frac{\beta}{a_{i^*i^*}} \max_i \left\{ \left|r_i^{(k)}\right| \right\}$$

3. (Update)

$$x_{i^*}^{(k+1)} = x_{i^*}^{(k)} + \frac{\omega}{a_{i^*i^*}} r_{i^*}^{(k)}$$

	2 GSS		Outlook

GSS: Proof of Convergence (sketch)

$$e^{(k)} = x - x^{(k)}, \quad a_{ii}^* = \max_i \{a_{ii}\}, \quad \tilde{r}_i = (0 \dots r_i \dots 0)^T$$
$$e^{(k+1)} - e^{(k)} = -\frac{\omega}{a_{i^*i^*}} \tilde{r}_{i^*}^{(k)} \tag{1}$$

$$||e^{(k+1)}||_{A}^{2} = ||e^{(k)}||_{A}^{2} - \frac{\omega(2-\omega)}{a_{i^{*}i^{*}}} \left(r_{i^{*}}^{(k)}\right)^{2}$$
(2)

$$||e^{(k+1)}||_{A}^{2} \leq \left(1 - \frac{\omega(2-\omega)\left(r_{i^{*}}^{(k)}\right)^{2}}{a_{i^{*}i^{*}}||e^{(k)}||_{A}^{2}}\right) \cdot ||e^{(k)}||_{A}^{2}$$
(3)

$$||e^{(k+1)}||_{A}^{2} \leq \left(1 - \frac{\omega(2-\omega)\lambda_{min}}{tr(A)}\right) \cdot ||e^{(k)}||_{A}^{2}$$
(4)

	3 RGS	Outlook

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

		3 RGS	Outlook
Trade-o	off		

classical GS | GS-Southwell computationally cheap | faster convergence

		3 RGS	Outlook
Trade-o	off		

classical GS | GS-Southwell computationally cheap | faster convergence

- 1. combine the advantages of both methods
- locally optimal ≠ optimal (even if largest residual not chosen every time, we may perform well)

	3 RGS	Outlook

RGS algorithm

Resembles GS by simplicity in choice of i^* . Resembles GSS by not being cyclic.

1. (Choose
$$i^*$$
) $\forall i \in \{1, \ldots, n\}$ we have

$$\mathbb{P}[i^* = i] = p_i$$

2. (Compute the residual)

$$r_{i^*}^{(k)} = b_{i^*} - \left(Ax^{(k)}\right)_{i^*}$$

3. (Update)

$$x_{i^*}^{(k+1)} = x_{i^*}^{(k)} + \frac{\omega}{a_{i^*i^*}} r_{i^*}^{(k)}$$

- compute only necessary
- store only necessary

	3 RGS	Outlook

Performance

Need to know two things

- 1. converges?
- 2. (if yes) how fast?

No more certainty

- 1. almost sure convergence
- 2. expected error reduction

	3 RGS	Outlook

Establishing convergence of RGS I

Theorem (1)

Assume that the next equation to update is chosen uniformly from the set of all n equations. Let $x^{(0)}$ be the initial guess. Then RGS method converges to the solution x with probability 1.

	3 RGS	Outlook

Lemma $(2^{nd}$ Borel-Cantelli Lemma)

Let E_n be a sequence of independent events in a sample space Ω . Then

$$\sum_{n\geq 1} \mathbb{P}(E_n) = \infty \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n\geq 1} \bigcup_{m\geq n} E_m\right) = 1$$

In other words, if $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty$, then with probability 1 infinitely many of E_n happen.

	3 RGS	Outlook

Theorem (1)

Assume that the next equation to update is chosen uniformly from the set of all n equations. Let $x^{(0)}$ be the initial guess. Then RGS method converges to the solution x with probability 1.

Proof 1.

- ► Let *E_k* be event that at the *k*-th step the equation corresponding to the largest residual is chosen
- ▶ ${E_k}$ independent $\Longrightarrow \sum_{k=1}^{\infty} \mathbb{P}(E_k) = \sum_{k=1}^{\infty} 1/n = \infty$
- Lemma \implies with probability 1, infinitely many of E_k happen

	3 RGS	Outlook

Theorem (2)

Let $x^{(0)}$ be the initial guess. And let $\mathbb{P}[i^* = i] = 1/n$, $\forall i$. Then the size of the relative error reduction in A-norm is

$$\mathbb{E}\left[||e^{(k+1)}||_{A}^{2}\right] \leq \left(1 - \frac{\omega(2-\omega)\lambda_{min}}{n\lambda_{max}}\right) \cdot \mathbb{E}\left[||e^{(k)}||_{A}^{2}\right]$$

Theorem (3)

Let $x^{(0)}$ be the initial guess. And let $\mathbb{P}[i^* = i] = a_{ii}/tr(A)$. Then the size of the relative error reduction in A-norm is

$$\mathbb{E}\left[||e^{(k+1)}||_{A}^{2}\right] \leq \left(1 - \frac{\omega(2-\omega)\lambda_{min}}{tr(A)}\right) \cdot \mathbb{E}\left[||e^{(k)}||_{A}^{2}\right]$$

On average, error reduction is the same as in case of greedy GSS.

		3 RGS	Outlook
Proo	f.		

$$||e^{(k+1)}||_{A}^{2} = ||e^{(k)}||_{A}^{2} - \frac{\omega(2-\omega)}{a_{ii}} \left(r_{i}^{(k)}\right)^{2}$$
(5)

$$\mathbb{E}\left[||e^{(k+1)}||_A^2\right] = \mathbb{E}\left[||e^{(k)}||_A^2\right] - \mathbb{E}\left[\frac{\omega(2-\omega)}{a_{ii}}\left(r_i^{(k)}\right)^2\right] \quad (6)$$

$$\mathbb{E}\left[||e^{(k+1)}||_A^2\right] = \mathbb{E}\left[||e^{(k)}||_A^2\right] - \omega(2-\omega)\sum_{i=1}^n \left(\frac{\left(r_i^{(k)}\right)^2}{a_{ii}} \cdot \mathbb{P}[i]\right)$$
(7)

		3 RGS		Outlook
•	nding on the c	5	tribution, we	
•	form equation	5		

Remark: Error reduction depends on tr(A). Often

 $tr(A) \ll n\lambda_{max}$

		5 Testing	Outlook

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)

5. Testing

		5 Testing	Outlook
\//hat as	 12		

- What can be tested?
 - 1. How many indices to pick at random?
 - 2. What are good starting vectors?

3. ...

Let k be the number of indices picked at random from the set $\{1, \ldots, n\}$. Then we can search this sample $\{i_1, \ldots, i_k\}$ to find the index corresponding to the largest residual (within the sample).

Remark

RGSS - Randomized Gauss-Seidel method with hint of Southwell.

Combination of RGS and GSS is dependent on k. In particular, RGS = RGSS(1) and GSS = RGSS(n).

		5 Testing	Outlook

Matrix A

Construct A as it was presented in [2] to demonstrate performance of GSS method.

$$A = toeplitz\left(\left[1 \ c_0\left[\frac{1}{1}, \frac{0}{2}, \frac{-1}{3}, \frac{0}{4}, \frac{1}{5}, \frac{0}{6}, \dots\right]\right]\right)$$

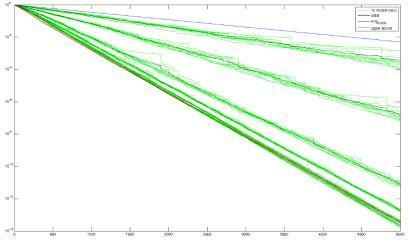


Figure: n = 500, matrix A, $k \in \{1, 2, 4, 6, 8, 10\}$

		5 Testing	Outlook

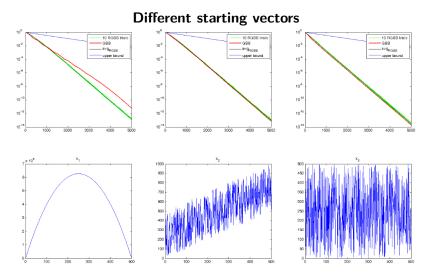


Figure: n = 100, k = 8, matrix A

		Outlook

- 1. Introduction
- 2. GS-Southwell(GSS)
- 3. Randomized Gauss-Seidel (RGS)
- 5. Testing

			Outlook
What n	ext?		

- Various applications (computed tomography, signal processing, etc.) require solutions to an overdetermined but consistent system of equations Ax = b. Kaczmarz method of iterative projections have been found useful. Related to Gauss-Seidel.
- What is optimal size of k?
- What is optimal (or good) choice of the probability distribution for choice of *i**?
- ▶ What is RGSS's robustness to different types of *spd* matrices?

					Outlook
Refere	ences I				
	Jo A. M. Bollen, Numerical sta M. Griebel, P. Oswald, Schwarz	,	or solving linear equations. A	lumer. Math., 1984, 43:361-377	
			stems in the 20th Century, .	J. Comput. Applied. Math., 2000,	, 123:1-33
	T. Strohmer, R.Vershynin, A ra $15:262-278$	ndomized Kaczmarz algorit	hm with exponential converg	gence, J. Fourier Anal. Appl., 200	19,
	S. Frankel, Convergence rates of	of iterative treatments of pa	rtial differential equations, A	MTAC, 1950, 6575	
	D.M. Young, Iterative methods Cambridge, MA, USA, 1950	for solving partial different	ial equations of elliptic type,	Ph.D. Thesis, Harvard University	6
	L.F. Richardson, The approximation with an application to the stress			problems involving differential eq 9 Ser, A, 1910, 210:307-357	juations
	Y. Censor, G. T. Herman, M. J Journal of Fourier Analysis and			arz algorithm of Strohmer and Ve	ershynin,
	G.E. Forsythe, Solving linear al	gebraic equations can be in	teresting, Bulletin of AMS, 1	1953, 59:299	
	D.W. Martin, G. J. Tee, Iterativ (1961) 4(3): 242-254	ve Methods for Linear Equa	ations with Symmetric Position	ve Definite Matrix, <i>The Compute</i>	r Journal
	Y.C. Eldar, D. Needell, Acceler. http://arxiv.org/abs/1008.		narz Method via the Johnsor	1-Lindenstrauss Lemma,	

		Outlook

References II

A.S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell Publishing Company, Johnson, CO, 1964, 102

		Outlook

thank you