Residual-based Gauss-Seidel method

Jakub Sliacan
supervised by Prof. Peter Oswald

Jacobs University Bremen

Problem

1. Introduction
2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

Problem

1. Introduction
2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

Notation

$$
\left(\begin{array}{ccc}
& A & \\
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b \\
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

In terms of rows

$$
\left(\begin{array}{ccc}
& A & \\
- & a_{1} & - \\
& a_{2} & - \\
\vdots & \vdots & \\
- & a_{n} & -
\end{array}\right)\left(\begin{array}{c}
x \\
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

What are we solving?

Given

$$
A \in \mathbb{R}^{n \times n} \text { spd, } b \in \mathbb{R}^{n}
$$

What are we solving?

Given

$$
A \in \mathbb{R}^{n \times n} \text { spd, } b \in \mathbb{R}^{n}
$$

Find

$$
x \in \mathbb{R}^{n} \text { which solves } A x=b
$$

- spd matrices arise from applications
- minimization problems
- structural engineering, circuit simulations, compressed sensing, nuclear reactor diffusion, oil reservoir modelling [3]

What are we solving?

Given

$$
A \in \mathbb{R}^{n \times n} \text { spd, } b \in \mathbb{R}^{n}
$$

Find

$$
x \in \mathbb{R}^{n} \text { which solves } A x=b
$$

- spd matrices arise from applications
- minimization problems
- structural engineering, circuit simulations, compressed sensing, nuclear reactor diffusion, oil reservoir modelling [3]
\Longrightarrow tailor solvers for spd systems

Problem

1. Introduction
2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

History of Iterative methods

$1840 s$	Jacobi	Jacobi method
$1870 s$	Seidel	Gauss-Seidel method
$1910 s$	Richardson	Richardson's method
$1930 s$	Temple	Method of steepest descend
$1940 s$	Young \& Frankel	Successive over-relaxation method (SOR)
$1950 s$	Hestenes \& Stiefel	Conjugate gradient method

Table: Approximate timeline: invention of major iterative methods

Jacobi (cyclic)

Update rule

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}\right]
$$

1 sweep through all equations $=1$ step

Gauss-Seidel (cyclic)

Update rule

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right]
$$

using most recent values of x

"Relaxed" Gauss-Seidel (cyclic)

Auxiliary $\tilde{x}^{(k+1)}$

$$
a_{i i} \tilde{x}_{i}^{(k+1)}=\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right]
$$

Idea of relaxation applied

$$
x_{i}^{(k+1)}=(1-\omega) x_{i}^{(k)}+\omega \tilde{x}_{i}^{(k+1)}=x_{i}^{(k)}+\omega\left(\tilde{x}_{i}^{(k+1)}-x_{i}^{(k)}\right)
$$

Update rule

$$
x_{i}^{(k+1)}=x_{i}^{(k)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-a_{i i} x_{i}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right]
$$

GS-Southwell (non-cyclic)

Update rule

$$
x_{i}^{n e w}=x_{i}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}-a_{i i} x_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right]
$$

equation to update is NOT the next one, but is picked based on the size of the corresponding residual

Problem

1. Introduction

2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

Update rule simplified:

$$
\begin{gathered}
x_{i}^{n e w}=x_{i}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j<i} a_{i j} x_{j}-a_{i i} x_{i}-\sum_{j>i} a_{i j} x_{j}\right] \\
x_{i}^{n e w}=x_{i}+\frac{\omega}{a_{i i}}\left(b_{i}-a_{i} x\right)=x_{i}+\frac{\omega}{a_{i i}}(b-A x)_{i}
\end{gathered}
$$

In the language of residuals:

$$
r=b-A x \quad \rightarrow r_{i}=(b-A x)_{i} \quad \rightarrow \quad x_{i}^{n e w}=x_{i}+\frac{\omega}{a_{i i}} r_{i}
$$

Choose equation to update

Update: $\quad x_{i^{*}}^{\text {new }}=x_{i^{*}}+\frac{\omega}{a_{i^{*} i^{*}}} r_{i^{*}}$

1. Classical GS

$$
i^{*}++
$$

2. GS-Southwell:

$$
\left|\frac{r_{i^{*}}}{a_{i^{*} i^{*}}}\right| \geq \frac{\beta}{a_{i^{*} i^{*}}} \cdot\|r\|_{\infty}, \quad 0<\beta \leq 1
$$

Summary of GSS procedure

1. (Compute the residual)

$$
r^{(k)}=b-A x^{(k)}
$$

2. (Choose $\left.i^{*}\right)$

$$
\left|\frac{r_{i^{*}}^{(k)}}{a_{i^{*} i^{*}}}\right| \geq \frac{\beta}{a_{i^{*} i^{*}}} \max _{i}\left\{\left|r_{i}^{(k)}\right|\right\}
$$

3. (Update)

$$
x_{i^{*}}^{(k+1)}=x_{i^{*}}^{(k)}+\frac{\omega}{a_{i^{*} i^{*}}} r_{i^{*}}^{(k)}
$$

GSS: Proof of Convergence (sketch)

$$
\begin{gather*}
e^{(k)}=x-x^{(k)}, \quad a_{i i}^{*}=\max _{i}\left\{a_{i i}\right\}, \quad \tilde{r}_{i}=\left(0 \ldots r_{i} \ldots 0\right)^{T} \\
e^{(k+1)}-e^{(k)}=-\frac{\omega}{a_{i^{*} i^{*}}} \tilde{r}_{i^{*}}^{(k)} \tag{1}\\
\left\|e^{(k+1)}\right\|_{A}^{2}=\left\|e^{(k)}\right\|_{A}^{2}-\frac{\omega(2-\omega)}{a_{i^{*} i^{*}}}\left(r_{i^{*}}^{(k)}\right)^{2} \tag{2}\\
\left\|e^{(k+1)}\right\|_{A}^{2} \leq\left(1-\frac{\omega(2-\omega)\left(r_{i^{*}}^{(k)}\right)^{2}}{a_{i^{*} *^{*}}\left\|e^{(k)}\right\|_{A}^{2}}\right) \cdot\left\|e^{(k)}\right\|_{A}^{2} \tag{3}\\
\left\|e^{(k+1)}\right\|_{A}^{2} \leq\left(1-\frac{\omega(2-\omega) \lambda_{\min }}{\operatorname{tr}(A)}\right) \cdot\left\|e^{(k)}\right\|_{A}^{2} \tag{4}
\end{gather*}
$$

Problem

1. Introduction
2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

Trade-off

> | classical GS | GS-Southwell |
| ---: | :--- |
| computationally cheap | faster convergence |

Trade-off

classical GS GS-Southwell computationally cheap faster convergence

1. combine the advantages of both methods
2. locally optimal \neq optimal (even if largest residual not chosen every time, we may perform well)

RGS algorithm

Resembles GS by simplicity in choice of i^{*}. Resembles GSS by not being cyclic.

1. (Choose i^{*}) $\forall i \in\{1, \ldots, n\}$ we have

$$
\mathbb{P}\left[i^{*}=i\right]=p_{i}
$$

2. (Compute the residual)

$$
r_{i^{*}}^{(k)}=b_{i^{*}}-\left(A x^{(k)}\right)_{i^{*}}
$$

3. (Update)

$$
x_{i^{*}}^{(k+1)}=x_{i^{*}}^{(k)}+\frac{\omega}{a_{i^{*} i^{*}}} r_{i^{*}}^{(k)}
$$

- compute only necessary
- store only necessary

Performance

Need to know two things

1. converges?
2. (if yes) how fast?

No more certainty

1. almost sure convergence
2. expected error reduction

Establishing convergence of RGS I

Theorem (1)

Assume that the next equation to update is chosen uniformly from the set of all n equations. Let $x^{(0)}$ be the initial guess. Then RGS method converges to the solution x with probability 1.

Lemma (2 $2^{\text {nd }}$ Borel-Cantelli Lemma)

Let E_{n} be a sequence of independent events in a sample space Ω. Then

$$
\sum_{n \geq 1} \mathbb{P}\left(E_{n}\right)=\infty \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap \bigcup_{n \geq 1} \bigcup_{m \geq n} E_{m}\right)=1
$$

In other words, if $\sum_{n=1}^{\infty} \mathbb{P}\left(E_{n}\right)=\infty$, then with probability 1 infinitely many of E_{n} happen.

Theorem (1)

Assume that the next equation to update is chosen uniformly from the set of all n equations. Let $x^{(0)}$ be the initial guess. Then RGS method converges to the solution x with probability 1 .

Proof 1.

- Let E_{k} be event that at the k-th step the equation corresponding to the largest residual is chosen
- $\left\{E_{k}\right\}$ independent $\Longrightarrow \sum_{k=1}^{\infty} \mathbb{P}\left(E_{k}\right)=\sum_{k=1}^{\infty} 1 / n=\infty$
- Lemma \Longrightarrow with probability 1 , infinitely many of E_{k} happen

Theorem (2)
Let $x^{(0)}$ be the initial guess. And let $\mathbb{P}\left[i^{*}=i\right]=1 / n$, $\forall i$. Then the size of the relative error reduction in A-norm is

$$
\mathbb{E}\left[\left\|e^{(k+1)}\right\|_{A}^{2}\right] \leq\left(1-\frac{\omega(2-\omega) \lambda_{\min }}{n \lambda_{\max }}\right) \cdot \mathbb{E}\left[\left\|e^{(k)}\right\|_{A}^{2}\right]
$$

Theorem (3)
Let $x^{(0)}$ be the initial guess. And let $\mathbb{P}\left[i^{*}=i\right]=a_{i i} / \operatorname{tr}(A)$. Then the size of the relative error reduction in A-norm is

$$
\mathbb{E}\left[\left\|e^{(k+1)}\right\|_{A}^{2}\right] \leq\left(1-\frac{\omega(2-\omega) \lambda_{\min }}{\operatorname{tr}(A)}\right) \cdot \mathbb{E}\left[\left\|e^{(k)}\right\|_{A}^{2}\right]
$$

On average, error reduction is the same as in case of greedy GSS.

Proof.

$$
\begin{gather*}
\left\|e^{(k+1)}\right\|_{A}^{2}=\left\|e^{(k)}\right\|_{A}^{2}-\frac{\omega(2-\omega)}{a_{i i}}\left(r_{i}^{(k)}\right)^{2} \tag{5}\\
\mathbb{E}\left[\left\|e^{(k+1)}\right\|_{A}^{2}\right]=\mathbb{E}\left[\left\|e^{(k)}\right\|_{A}^{2}\right]-\mathbb{E}\left[\frac{\omega(2-\omega)}{a_{i i}}\left(r_{i}^{(k)}\right)^{2}\right] \tag{6}\\
\mathbb{E}\left[\left\|e^{(k+1)}\right\|_{A}^{2}\right]=\mathbb{E}\left[\left\|e^{(k)}\right\|_{A}^{2}\right]-\omega(2-\omega) \sum_{i=1}^{n}\left(\frac{\left(r_{i}^{(k)}\right)^{2}}{a_{i i}} \cdot \mathbb{P}[i]\right)
\end{gather*}
$$

Depending on the choice of the probability distribution, we transform equation 7 into Theorem 1 or 2.

Remark: Error reduction depends on $\operatorname{tr}(A)$. Often

$$
\operatorname{tr}(A) \ll n \lambda_{\max }
$$

Problem

1. Introduction
2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

What can be tested?

1. How many indices to pick at random?
2. What are good starting vectors?
3.

Let k be the number of indices picked at random from the set $\{1, \ldots, n\}$. Then we can search this sample $\left\{i_{1}, \ldots, i_{k}\right\}$ to find the index corresponding to the largest residual (within the sample).

Remark

RGSS - Randomized Gauss-Seidel method with hint of Southwell.

Combination of RGS and GSS is dependent on k. In particular, $\operatorname{RGS}=\operatorname{RGSS}(1)$ and $G S S=\operatorname{RGSS}(n)$.

Matrix A
Construct A as it was presented in [2] to demonstrate performance of GSS method.

$$
A=\text { toeplitz }\left(\left[1 c_{0}\left[\frac{1}{1}, \frac{0}{2}, \frac{-1}{3}, \frac{0}{4}, \frac{1}{5}, \frac{0}{6}, \ldots\right]\right]\right)
$$

Size of k

Figure: $n=500$, matrix $A, k \in\{1,2,4,6,8,10\}$

Different starting vectors

Figure: $n=100, k=8$, matrix A

Problem

1. Introduction
2. GS-Southwell(GSS)
3. Randomized Gauss-Seidel (RGS)
4. Testing

Outlook

What next?

- Various applications (computed tomography, signal processing, etc.) require solutions to an overdetermined but consistent system of equations $A x=b$. Kaczmarz method of iterative projections have been found useful. Related to Gauss-Seidel.
- What is optimal size of k ?
- What is optimal (or good) choice of the probability distribution for choice of i^{*} ?
- What is RGSS's robustness to different types of $s p d$ matrices?

References I

Jo A. M. Bollen, Numerical stability of descent methods for solving linear equations. Numer. Math., 1984, 43:361-377
M. Griebel, P. Oswald, Schwarz-Southwell Methods
Y. Saad, H. A. van der Vorst, Iterative solution of linear systems in the 20th Century, J. Comput. Applied. Math., 2000, 123:1-33
T. Strohmer, R.Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 2009, 15: 262-278
S. Frankel, Convergence rates of iterative treatments of partial differential equations, MTAC, 1950, 6575
D.M. Young, Iterative methods for solving partial differential equations of elliptic type, Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1950
L.F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses to a masonry dam, Philos. Trans. Roy. Soc. London Ser, A, 1910, 210:307-357
Y. Censor, G. T. Herman, M. Jiang, A note on the behavior of the randomized Kaczmarz algorithm of Strohmer and Vershynin, Journal of Fourier Analysis and Applications, 2009, 15:431436
G.E. Forsythe, Solving linear algebraic equations can be interesting, Bulletin of AMS, 1953, 59:299
D.W. Martin, G. J. Tee, Iterative Methods for Linear Equations with Symmetric Positive Definite Matrix, The Computer Journal (1961) 4(3): 242-254
Y.C. Eldar, D. Needell, Acceleration of Randomized Kaczmarz Method via the Johnson-Lindenstrauss Lemma, http://arxiv.org/abs/1008.4397v2

References II

A.S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell Publishing Company, Johnson, CO, 1964, 102
thank you

