Well-behaved $1 \times n$ permutation grid classes

Robert Brignall Jakub Sliačan

Dagstuhl 2018

View permutations as drawings

635814972

Enumerating permutation classes

Class
Collection of permutations \mathcal{C} together with a size (length) function
$|\cdot|$ on elements of \mathcal{C}.

Enumeration

Determining the number of permutations of each length in \mathcal{C} yields an enumeration sequence.

Example
Class $\operatorname{Av}(123,321)$ is enumerated by the sequence
$1,1,2,4,4,0,0,0 \ldots$ (zeros follow from Erdős-Szekeres).

Storing enumeration sequences

Generating functions
Infinitely long objects need a suitable data structure to be stored in finite space - generating functions (gfs) FTW!

Example
Store $1,1,1,1, \ldots$ as coefficients of $1 /(1-z)=\sum_{k=0}^{\infty} z^{k}$.
Not all gfs are made equal:
$\underbrace{\text { rational }}_{\text {easy }} \subset \underbrace{\text { algebraic }}_{\text {nice }} \subset \underbrace{\text { D-finite } \subset \text { non } D \text {-finite } \subset \text { power series }}_{\text {other }}$

Grid classes

Definition

Permutation grid class is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

Grid classes

Definition

Permutation grid class is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

$$
\text { belongs to }\left[\begin{array}{cc}
\operatorname{Av}(12) & \operatorname{Av}(21) \\
\operatorname{Av}(12) & \operatorname{Av}(21)
\end{array}\right] \text {. }
$$

Grid classes

Definition

Permutation grid class is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

belongs to $\left[\begin{array}{ll}\operatorname{Av}(12) & \operatorname{Av}(21) \\ \operatorname{Av}(12) & \operatorname{Av}(21)\end{array}\right]$.

Example: non-unique gridding

2615743 is in ${ }^{\operatorname{Av}(321)} \operatorname{Av(12)}$ as witnessed by the middle two partitions.

No!

Yes!

Yes!

No!

Ideally, we'd like to enumerate these

\mathcal{C}_{11}	\mathcal{C}_{12}	\mathcal{C}_{13}		
\mathcal{C}_{21}	\mathcal{C}_{22}	\mathcal{C}_{23}		
\mathcal{C}_{31}	\mathcal{C}_{32}	\mathcal{C}_{33}		

	$\mathcal{C}_{1 m}$	
	$\mathcal{C}_{2 m}$	
\cdots	$\mathcal{C}_{3 m}$	

$$
\mathcal{C}_{n 1} \mathcal{C}_{n 2} \mid \mathcal{C}_{n 3}
$$

$$
\mathcal{C}_{n m}
$$

Even if $\mathcal{C}_{i j}$ are permutation classes that we CAN enumerate

... or this

\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{C}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}		\cdots	\mathcal{M}
		\vdots			\ddots	
\mathcal{M}	\mathcal{M}	\mathcal{M}				\mathcal{M}

\mathcal{M} monotone classes, \mathcal{C} non-monotone class

... actually, not even this

\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}			\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}		\cdots	\mathcal{M}
						\vdots
\mathcal{M}	\mathcal{M}	\mathcal{M}				

\mathcal{M} monotone classes
But! we know their growth rates $=(\text { spectral radius })^{2}$ of the row-column graph [Bev15a].
these have rational generating functions $\left[\mathrm{AAB}^{+} 13\right]$

generating functions conjectured for monotone increasing strips [Bev15b]

...

New: monotonely padded context-free classes are nice

| \mathcal{M}_{1} | \ldots | \mathcal{M}_{k} | \mathcal{C} | \mathcal{M}_{k+1} | \ldots | \mathcal{M}_{k+1} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Theorem (approx.)
If \mathcal{C} is a context-free [regular] permutation class and \mathcal{M}_{i} are monotone permutation classes, then
$\mathcal{M}_{1}|\ldots| \mathcal{M}_{k}|\mathcal{C}| \mathcal{M}_{k+1}|\ldots| \mathcal{M}_{k+\ell}$ is a context-free [regular] class (and admits an algebraic [rational] generating function).

Context-free class

Definition

A class \mathcal{C} is context-free if it can be characterised by the following system of equations, where $\mathcal{C}=\mathcal{S}_{1}$.

$$
\left\{\begin{aligned}
\mathcal{S}_{1} & =f_{1}\left(\mathcal{Z}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{r}\right) \\
& \vdots \\
\mathcal{S}_{r} & =f_{r}\left(\mathcal{Z}, \mathcal{S}_{1}, \ldots, \mathcal{S}_{r}\right)
\end{aligned}\right.
$$

where f_{i} are constructors only involving,$+ \times$, and $\mathcal{E}=\emptyset$.

Regular class

Definition

A class \mathcal{C} is regular if it can be characterised by the following system of equations, where $\mathcal{C}=\mathcal{S}_{1}$.

$$
\left\{\begin{aligned}
\mathcal{S}_{1} & =f_{1}\left(\mathcal{Z}, S_{1}, \ldots, \mathcal{S}_{r}\right) \\
& \vdots \\
\mathcal{S}_{r} & =f_{r}\left(\mathcal{Z}, S_{1}, \ldots, \mathcal{S}_{r}\right)
\end{aligned}\right.
$$

where f_{i} are constructors only involving atoms and operations + , \times, and SEQ[•].

Example of context-free class: Separables

$$
\begin{aligned}
\mathcal{S} & =\mathcal{Z}+\mathcal{S}_{\oplus} \mathcal{S}+\mathcal{S} \mathcal{S}_{\ominus} \\
\mathcal{S}_{\ominus} & =\mathcal{Z}+\mathcal{S}_{\oplus} \mathcal{S} \\
\mathcal{S}_{\oplus} & =\mathcal{Z}+\mathcal{S} \mathcal{S}_{\ominus}
\end{aligned}
$$

Context-free classes are nice

Theorem (Chomsky-Schützenberger)
A context-free combinatorial class \mathcal{C} admits an algebraic generating function.

Many things are context-free, e.g.
finitely many simples \Longrightarrow context-free

Before anything else...

Ensure unique gridding

Associate RHS sequences with LHS points

Record Cartesian product bottom to top

Leftmost gridlines

Griddable \rightarrow gridded

Convention:

Let π be a permutation from $\mathcal{C}_{1} \mid \mathcal{C}_{2}$. The gridline in π is chosen to be the left-most possible. I.e. if it was any further left, the sub-permutation to the right of it would not belong to the designated class \mathcal{C}_{2}.

Leftmost gridlines: example $\mathcal{C} \mid \operatorname{Av}(21)$

Gaps associated with points

The gap associated with x is the space on the RHS below x and above the next point below it on the LHS.

Bottom-to-top Cartesian products

An example of a class which would correspond to the term $\mathcal{Z C C D}$ in a bottom-to-top combinatorial specification.

Strategy

1. Append monotone classes one at a time.
2. Break down "appending" into simpler steps.
3. Set up a standalone operator for each step.
4. Prove "context-freeness invariant" for each operator.
5. Coordinate how operators act alongside each other.
6. Establish an "appending invariant".
7. Put everything together.

Appending invariant

1. Append monotone classes one at a time.
2. Break down "appending" into simpler steps.
3. Set up a standalone operator for each step.
4. Prove "context-freeness invariant" for each operator.
5. Coordinate how operators act alongside each other.
6. Establish an "appending invariant".
7. Put everything together.

Appending invariant

if \mathcal{C} is context-free, then $\mathcal{C} \mid \operatorname{Av}(21)$ is context-free
depends on items 2.-5. We'll observe it holds once 2.-5. are done.

Appending step-by-step

1. Append monotone classes one at a time.
2. Break down "appending" into simpler steps.
3. Set up a standalone operator for each step.
4. Prove "context-freeness invariant" for each operator.
5. Coordinate how operators act alongside each other.
6. Establish an "appending invariant".
7. Put everything together.

What we want to do: example

Enumerate $\operatorname{Av}(21|21| 21)$. Append cells from left to right.

1. Start with a single increasing sequence on the LHS.

2. Now append stuff on the RHS.

3. Finally, append the third cell.

Tracking the rightmost point

The rightmost point of \mathcal{C} is critical. So pick the combinatorial specification of \mathcal{C} that tracks the rightmost point.

Tracking the rightmost point

The rightmost point of \mathcal{C} is critical. So pick the combinatorial specification of \mathcal{C} that tracks the rightmost point.

Designing operators

1. Append monotone classes one at a time.
2. Break down "appending" into simpler steps.
3. Set up a standalone operator for each step.
4. Prove "context-freeness invariant" for each operator.
5. Coordinate how operators act alongside each other.
6. Establish an "appending invariant".
7. Put everything together.

Operators 1

Consider Ω_{1}, an operator that appends a single point on the right of a term $\mathcal{T}_{m}=X_{1} \ldots X_{m}$ (bottom to top). Rightmost point is in k th block.

$$
\begin{aligned}
\Omega_{1}(\mathcal{Z})= & \mathcal{Z}^{*} \mathcal{Z} \\
\Omega_{1}\left(\mathcal{Z}^{*}\right)= & \mathcal{Z}^{*} \mathcal{Z} \\
\Omega_{1}\left(\mathcal{T}_{m}\right)= & \begin{cases}\Omega_{1}\left(X_{1}^{*}\right) \Omega_{0}\left(X_{2} \cdots X_{m}\right) \\
\Omega_{1}\left(X_{1}\right) \Omega_{0}\left(X_{2} \cdots X_{m}\right)+\Omega_{0}\left(X_{1}\right) \Omega_{1}\left(X_{2} \cdots X_{m}\right), & \text { if } k=1 \\
\text { if } k>1 .\end{cases} \\
& \mathcal{Z} / \mathcal{Z}^{*} \\
\bullet & \Omega_{1}
\end{aligned}
$$

Operator 2

Ω_{11} is the most involved operator - placing a sequence on the RHS with designated bottom and top point. Rightmost point in k th block.

$$
\begin{aligned}
& \Omega_{11}(\mathcal{Z})=\mathcal{Z}(\mathcal{M}+\mathcal{E}) \mathcal{Z}^{*} \mathcal{Z} \\
& \Omega_{11}\left(\mathcal{Z}^{*}\right)=\mathcal{Z}(\mathcal{M}+\mathcal{E}) \mathcal{Z}^{*} \mathcal{Z} \\
& \Omega_{11}\left(\mathcal{T}_{h}\right)=\left\{\begin{array}{c}
\Omega_{11}\left(X_{1}^{*}\right) \Omega_{0}\left(X_{2} \cdots X_{m}\right)+ \\
+\Omega_{10}\left(X_{1}^{*}\right) \Omega_{01}\left(X_{2} \cdots X_{m}\right)
\end{array}\right\} \quad \text { if } k=1 \\
& \begin{array}{c|c}
\mathcal{Z} . & \begin{array}{|c}
\mathcal{M}^{\mathcal{E}} \\
\bullet \mathcal{Z}^{*}
\end{array}
\end{array}
\end{aligned}
$$

All operators

We need the following information captured when appending sequences on the RHS.

- Ω_{0} : Nothing appended on the RHS.
- Ω_{1} : Single point appended on the RHS (leftmost \& rightmost coincide)
- Ω_{∞} : Possibly empty sequence by itself.
- Ω_{10} : Point followed by a (possibly empty) sequence above.
- Ω_{01} : Point preceded by a (possibly empty) sequence below.
- Ω_{11} : Point followed by a (possibly empty) sequence followed by another point.

Apply Ω_{11} to a class $\mathcal{C}=X_{1} X_{2} X_{3}^{*} X_{4}$

$$
\Omega_{10}\left(X_{1}\right) \Omega_{\infty}\left(X_{2}\right) \Omega_{01}^{\prime}\left(X_{3}^{*}\right) X_{4} \mathcal{Z}
$$

$\Omega_{10}\left(X_{1}\right) \Omega_{\infty}\left(X_{2} X_{3}^{*} X_{4}\right) \Omega_{01}(\mathcal{Z})$
$X_{1} \Omega_{10}\left(X_{2}\right) \Omega_{01}\left(X_{3}^{*}\right) X_{4} \mathcal{Z} \quad X_{1} \Omega_{10}\left(X_{2}\right) \Omega_{\infty}\left(X_{3}^{*}\right) \Omega_{01}\left(X_{4}\right) \mathcal{Z}$

Apply Ω_{11} to a class $\mathcal{C}=X_{1} X_{2} X_{3}^{*} X_{4}$

Correctness

1. Append monotone classes one at a time.
2. Break down "appending" into simpler steps.
3. Set up a standalone operator for each step.
4. Prove "context-freeness invariant" for each operator.
5. Coordinate how operators act alongside each other.
6. Establish an "appending invariant".
7. Put everything together.

- Each operator only depends (via,$+ \times$) on other operators and classes. So the specification is finite \& closed.
- Action on atoms is trivial.
- Hence, appending invariant holds: if \mathcal{C} context-free, then $\mathcal{C} \mid \operatorname{Av}(21)$ context-free.

Final touches

1. Append monotone classes one at a time.
2. Break down "appending" into simpler steps.
3. Set up a standalone operator for each step.
4. Prove "context-freeness invariant" for each operator.
5. Coordinate how operators act alongside each other.
6. Establish an "appending invariant".
7. Put everything together.

Symmetry operators

Appending a monotone decreasing class

Appending on the left

Combining everything...

! This is incorrect, but close enough !

$$
\mathcal{C} \mid \operatorname{Av}(21)=\mathcal{E}+\mathcal{M}+\Omega_{1}\left(\mathcal{C}^{*}\right)+\Omega_{11}\left(\mathcal{C}^{*}\right)
$$

- For iterated juxtapositions, we set $\mathcal{C}:=\mathcal{C} \mid \operatorname{Av}(21)$, and continue as before (possibly first pre-processing with symmetry operators).
- Start with regular \mathcal{C}, end up with regular $1 \times n$ class.
- Enumerated exactly:
- $\mathcal{S} \mid \operatorname{Av}(21)$
- $\operatorname{Av}(132) \mid \operatorname{Av}(21)$
- $\operatorname{Av}(21)|\operatorname{Av}(21)| \operatorname{Av}(21)$

Things to notice

- algorithmic approach \rightarrow can be automated
- it's constructive: can enumerate (provide g.f. for) every such $1 \times n$ grid class
- D-finite?
- $n \times m$ acyclic grid classes?
- etc.
M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter. Geometric grid classes of permutations.
Transactions of the American Mathematical Society, 365(11):5859-5881, 2013.

宔
D. I. Bevan.

Growth rates of permutation grid classes, tours on graphs, and the spectral radius.
Transactions of the American Mathematical Society, 367(8):5863-5889, 2015.
D. I. Bevan.

On the growth of permutation classes.
PhD thesis, The Open University, 2015.

