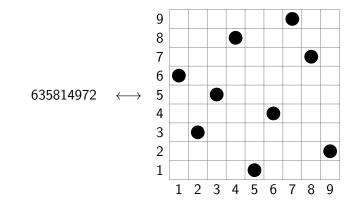
Well-behaved $1 \times n$ permutation grid classes

Robert Brignall Jakub Sliačan

Dagstuhl 2018

View permutations as drawings



Enumerating permutation classes

Class

Collection of permutations C together with a *size (length) function* $|\cdot|$ on elements of C.

Enumeration

Determining the number of permutations of each length in \mathcal{C} yields an *enumeration sequence*.

Example

Class Av(123, 321) is enumerated by the sequence $1, 1, 2, 4, 4, 0, 0, 0 \dots$ (zeros follow from Erdős-Szekeres).

Storing enumeration sequences

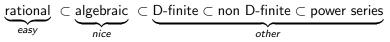
Generating functions

Infinitely long objects need a suitable data structure to be stored in finite space – *generating functions (gfs)* FTW!

Example

Store $1, 1, 1, 1, \ldots$ as coefficients of $1/(1-z) = \sum_{k=0}^{\infty} z^k$.

Not all gfs are made equal:



Grid classes

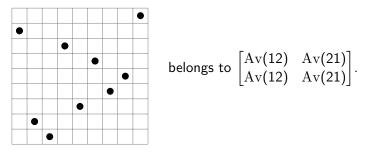
Definition

Permutation *grid class* is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

Grid classes

Definition

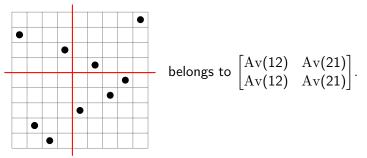
Permutation *grid class* is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.



Grid classes

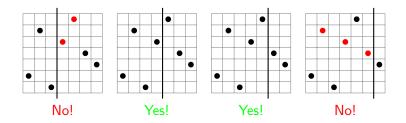
Definition

Permutation *grid class* is a permutation class. It consists of permutations that can be chopped up by vertical and horizontal lines into sub-permutations belonging to designated classes.

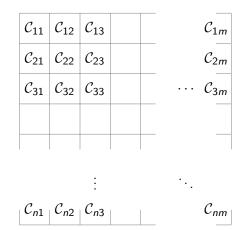


Example: non-unique gridding

2615743 is in $\left| \begin{smallmatrix} {\rm Av}(321) & {\rm Av}(12) \\ {\rm partitions.} \end{smallmatrix} \right|$ as witnessed by the middle two

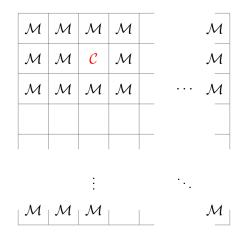


Ideally, we'd like to enumerate these



Even if C_{ii} are permutation classes that we CAN enumerate

\ldots or this



 ${\mathcal M}$ monotone classes, ${\mathcal C}$ non-monotone class

... actually, not even this

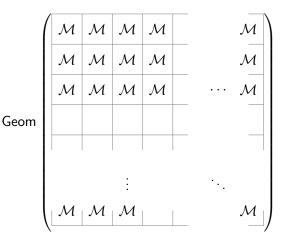
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}
\mathcal{M}	\mathcal{M}	\mathcal{M}	\mathcal{M}	$\cdots \mathcal{M}$

 $\left| \begin{array}{cc} \mathcal{M} & \mathcal{M} \\ \mathcal{M} & \mathcal{M} \end{array} \right|$

 \mathcal{M} monotone classes But! we know their growth rates = (spectral radius)² of the row-column graph [Bev15a].

...also ...

these have rational generating functions [AAB⁺13]



generating functions conjectured for monotone increasing strips [Bev15b]

New: monotonely padded context-free classes are nice

Theorem (approx.)

If C is a context-free [regular] permutation class and M_i are monotone permutation classes, then $\mathcal{M}_1|\ldots|\mathcal{M}_k|C|\mathcal{M}_{k+1}|\ldots|\mathcal{M}_{k+\ell}$ is a context-free [regular] class (and admits an algebraic [rational] generating function).

Context-free class

Definition

A class C is *context-free* if it can be characterised by the following system of equations, where $C = S_1$.

$$\begin{cases} S_1 &= f_1(\mathcal{Z}, S_1, \dots, S_r) \\ \vdots \\ S_r &= f_r(\mathcal{Z}, S_1, \dots, S_r) \end{cases}$$

where f_i are constructors only involving +, ×, and $\mathcal{E} = \emptyset$.

Regular class

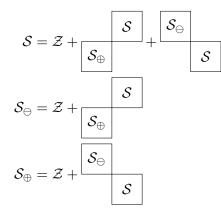
Definition

A class C is *regular* if it can be characterised by the following system of equations, where $C = S_1$.

$$\begin{cases} \mathcal{S}_1 &= f_1(\mathcal{Z}, \mathcal{S}_1, \dots, \mathcal{S}_r) \\ &\vdots \\ \mathcal{S}_r &= f_r(\mathcal{Z}, \mathcal{S}_1, \dots, \mathcal{S}_r) \end{cases}$$

where f_i are constructors only involving atoms and operations +, \times , and SEQ[·].

Example of context-free class: Separables



$$egin{aligned} \mathcal{S} &= \mathcal{Z} + \mathcal{S}_\oplus \mathcal{S} + \mathcal{S} \mathcal{S}_\oplus \ \mathcal{S}_\oplus &= \mathcal{Z} + \mathcal{S}_\oplus \mathcal{S} \ \mathcal{S}_\oplus &= \mathcal{Z} + \mathcal{S} \mathcal{S}_\oplus, \end{aligned}$$

Context-free classes are nice

Theorem (Chomsky-Schützenberger)

A context-free combinatorial class ${\cal C}$ admits an algebraic generating function.

Many things are context-free, e.g.

finitely many simples \implies context-free

Before anything else...

Ensure unique gridding

Associate RHS sequences with LHS points

Record Cartesian product bottom to top

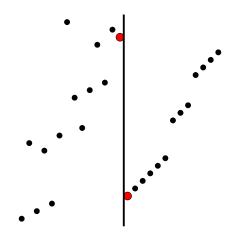
Leftmost gridlines

$\mathsf{Griddable} \to \mathsf{gridded}$

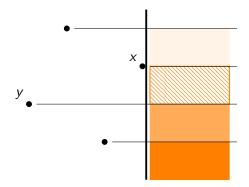
Convention:

Let π be a permutation from $C_1|C_2$. The gridline in π is chosen to be the left-most possible. I.e. if it was any further left, the sub-permutation to the right of it would not belong to the designated class C_2 .

Leftmost gridlines: example C|Av(21)

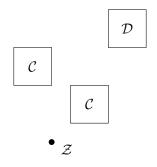


Gaps associated with points



The gap associated with x is the space on the RHS below x and above the next point below it on the LHS.

Bottom-to-top Cartesian products



An example of a class which would correspond to the term \mathcal{ZCCD} in a bottom-to-top combinatorial specification.

Strategy

- 1. Append monotone classes one at a time.
- 2. Break down "appending" into simpler steps.
- 3. Set up a standalone operator for each step.
- 4. Prove "context-freeness invariant" for each operator.
- 5. Coordinate how operators act alongside each other.
- 6. Establish an "appending invariant".
- 7. Put everything together.

Appending invariant

- 1. Append monotone classes one at a time.
- 2. Break down "appending" into simpler steps.
- 3. Set up a standalone operator for each step.
- 4. Prove "context-freeness invariant" for each operator.
- 5. Coordinate how operators act alongside each other.
- 6. Establish an "appending invariant".
- 7. Put everything together.

Appending invariant

if C is context-free, then C|Av(21) is context-free

depends on items 2.-5. We'll observe it holds once 2.-5. are done.

Appending step-by-step

- 1. Append monotone classes one at a time.
- 2. Break down "appending" into simpler steps.
- 3. Set up a standalone operator for each step.
- 4. Prove "context-freeness invariant" for each operator.
- 5. Coordinate how operators act alongside each other.
- 6. Establish an "appending invariant".
- 7. Put everything together.

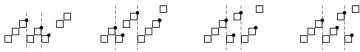
What we want to do: example

Enumerate Av(21|21|21). Append cells from left to right.

1. Start with a single increasing sequence on the LHS.

2. Now append stuff on the RHS.

3. Finally, append the third cell.

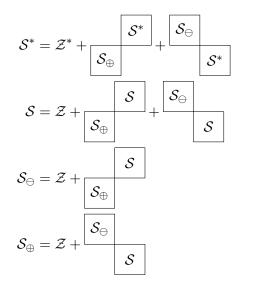


Tracking the rightmost point

The rightmost point of C is critical. So pick the combinatorial specification of C that tracks the rightmost point.

Tracking the rightmost point

The rightmost point of C is critical. So pick the combinatorial specification of C that tracks the rightmost point.



$$\begin{split} \mathcal{S}^* &= \mathcal{Z}^* + \mathcal{S}_{\oplus} \mathcal{S}^* + \mathcal{S}^* \mathcal{S}_{\ominus} \\ \mathcal{S} &= \mathcal{Z} + \mathcal{S}_{\oplus} \mathcal{S} + \mathcal{S} \mathcal{S}_{\ominus} \\ \mathcal{S}_{\ominus} &= \mathcal{Z} + \mathcal{S}_{\oplus} \mathcal{S} \\ \mathcal{S}_{\oplus} &= \mathcal{Z} + \mathcal{S} \mathcal{S}_{\ominus}. \end{split}$$

Designing operators

- 1. Append monotone classes one at a time.
- 2. Break down "appending" into simpler steps.
- 3. Set up a standalone operator for each step.
- 4. Prove "context-freeness invariant" for each operator.
- 5. Coordinate how operators act alongside each other.
- 6. Establish an "appending invariant".
- 7. Put everything together.

Operators 1

Consider Ω_1 , an operator that appends a single point on the right of a term $\mathcal{T}_m = X_1 \dots X_m$ (bottom to top). Rightmost point is in *k*th block.

Operator 2

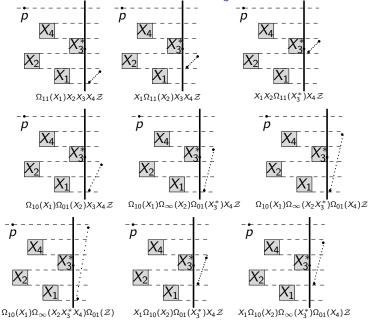
 Ω_{11} is the most involved operator – placing a sequence on the RHS with designated bottom and top point. Rightmost point in *k*th block.

All operators

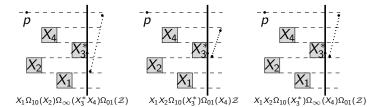
We need the following information captured when appending sequences on the RHS.

- Ω_0 : Nothing appended on the RHS.
- Ω₁: Single point appended on the RHS (leftmost & rightmost coincide)
- Ω_{∞} : Possibly empty sequence by itself.
- Ω_{10} : Point followed by a (possibly empty) sequence above.
- Ω_{01} : Point preceded by a (possibly empty) sequence below.
- Ω₁₁: Point followed by a (possibly empty) sequence followed by another point.

Apply Ω_{11} to a class $\mathcal{C} = X_1 X_2 X_3^* X_4$



Apply Ω_{11} to a class $\mathcal{C} = X_1 X_2 X_3^* X_4$



Correctness

- 1. Append monotone classes one at a time.
- 2. Break down "appending" into simpler steps.
- 3. Set up a standalone operator for each step.
- 4. Prove "context-freeness invariant" for each operator.
- 5. Coordinate how operators act alongside each other.
- 6. Establish an "appending invariant".
- 7. Put everything together.

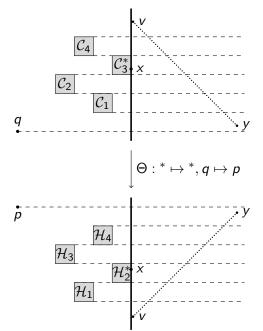
- ► Each operator only depends (via +,×) on other operators and classes. So the specification is finite & closed.
- Action on atoms is trivial.
- ► Hence, appending invariant holds: if C context-free, then C|Av(21) context-free.

Final touches

- 1. Append monotone classes one at a time.
- 2. Break down "appending" into simpler steps.
- 3. Set up a standalone operator for each step.
- 4. Prove "context-freeness invariant" for each operator.
- 5. Coordinate how operators act alongside each other.
- 6. Establish an "appending invariant".
- 7. Put everything together.

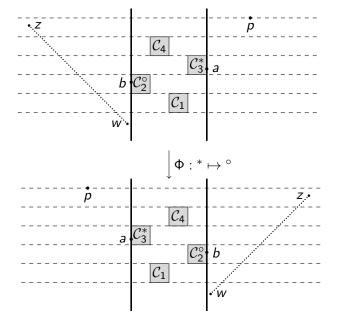
Symmetry operators

Appending a monotone decreasing class



35 / 38

Appending on the left



Combining everything...

! This is incorrect, but close enough !

$$\mathcal{C}|\mathrm{Av}(21) = \mathcal{E} + \mathcal{M} + \Omega_1(\mathcal{C}^*) + \Omega_{11}(\mathcal{C}^*)$$

- ► For iterated juxtapositions, we set C := C|Av(21), and continue as before (possibly first pre-processing with symmetry operators).
- Start with *regular* C, end up with *regular* $1 \times n$ class.
- Enumerated exactly:
 - ► *S*|Av(21)
 - ► Av(132)|Av(21)
 - ► Av(21)|Av(21)|Av(21)

Things to notice

- algorithmic approach \rightarrow can be automated
- it's constructive: can enumerate (provide g.f. for) every such $1 \times n$ grid class
- D-finite?
- $n \times m$ acyclic grid classes?
- etc.

M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter.

Geometric grid classes of permutations.

Transactions of the American Mathematical Society, 365(11):5859–5881, 2013.

D. I. Bevan.

Growth rates of permutation grid classes, tours on graphs, and the spectral radius.

Transactions of the American Mathematical Society, 367(8):5863–5889, 2015.

D. I. Bevan.

On the growth of permutation classes.

PhD thesis, The Open University, 2015.