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View permutations as drawings
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Enumerating permutation classes

Class
Collection of permutations C together with a size (length) function
| · | on elements of C.

Enumeration
Determining the number of permutations of each length in C yields
an enumeration sequence.

Example

Class Av(123, 321) is enumerated by the sequence
1, 1, 2, 4, 4, 0, 0, 0 . . . (zeros follow from Erdős-Szekeres).
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Storing enumeration sequences

Generating functions

Infinitely long objects need a suitable data structure to be stored in
finite space – generating functions (gfs) FTW!

Example

Store 1, 1, 1, 1, . . . as coefficients of 1/(1− z) =
∑∞

k=0 z
k .

Not all gfs are made equal:

rational︸ ︷︷ ︸
easy

⊂ algebraic︸ ︷︷ ︸
nice

⊂ D-finite ⊂ non D-finite ⊂ power series︸ ︷︷ ︸
other
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Grid classes

Definition
Permutation grid class is a permutation class. It consists of
permutations that can be chopped up by vertical and horizontal
lines into sub-permutations belonging to designated classes.

belongs to

[
Av(12) Av(21)
Av(12) Av(21)

]
.
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Example: non-unique gridding

2615743 is in Av(321) Av(12) as witnessed by the middle two
partitions.

No! Yes! Yes! No!
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Ideally, we’d like to enumerate these

C11 C12 C13

C21 C22 C23

C31 C32 C33

...
. . .

. . .

Cn1 Cn2 Cn3

C1m

C2m

C3m

Cnm

Even if Cij are permutation classes that we CAN enumerate
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. . . or this

M M M M

M M C M

M M M M

...
. . .

. . .

M M M

M

M

M

M

M monotone classes, C non-monotone class
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. . . actually, not even this

M M M M

M M M M

M M M M

...
. . .

. . .

M M M

M

M

M

M

M monotone classes
But! we know their growth rates = (spectral radius)2 of the

row-column graph [Bev15a].
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. . . also . . .

these have rational generating functions [AAB+13]

Geom



M M M M

M M M M

M M M M

...
. . .

. . .

M M M

M

M

M

M


10 / 38



. . . and . . .

generating functions conjectured for monotone increasing
strips [Bev15b]

. . .
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New: monotonely padded context-free classes are nice

M1 · · · Mk C Mk+1 · · · Mk+l

Theorem (approx.)

If C is a context-free [regular] permutation class andMi are
monotone permutation classes, then
M1| . . . |Mk |C|Mk+1| . . . |Mk+` is a context-free [regular] class
(and admits an algebraic [rational] generating function).
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Context-free class

Definition
A class C is context-free if it can be characterised by the following
system of equations, where C = S1.

S1 = f1(Z,S1, . . . ,Sr )
...

Sr = fr (Z,S1, . . . ,Sr )

where fi are constructors only involving +, ×, and E = ∅.
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Regular class

Definition
A class C is regular if it can be characterised by the following
system of equations, where C = S1.

S1 = f1(Z, S1, . . . ,Sr )
...

Sr = fr (Z,S1, . . . ,Sr )

where fi are constructors only involving atoms and operations +,
×, and Seq[·].
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Example of context-free class: Separables

S = Z +
S⊕

S
+

S

S	

S	 = Z +
S⊕

S

S⊕ = Z +
S

S	

S = Z + S⊕S + SS	
S	 = Z + S⊕S
S⊕ = Z + SS	,
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Context-free classes are nice

Theorem (Chomsky-Schützenberger)

A context-free combinatorial class C admits an algebraic generating
function.

Many things are context-free, e.g.

finitely many simples =⇒ context-free
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Before anything else...

Ensure unique gridding

Associate RHS sequences with LHS points

Record Cartesian product bottom to top
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Leftmost gridlines

Griddable → gridded

Convention:
Let π be a permutation from C1|C2. The gridline in π is chosen to
be the left-most possible. I.e. if it was any further left, the
sub-permutation to the right of it would not belong to the
designated class C2.
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Leftmost gridlines: example C|Av(21)
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Gaps associated with points

y

x

The gap associated with x is the space on the RHS below x and
above the next point below it on the LHS.
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Bottom-to-top Cartesian products

D

C

C

Z

An example of a class which would correspond to the term ZCCD
in a bottom-to-top combinatorial specification.
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Strategy

1. Append monotone classes one at a time.

2. Break down “appending” into simpler steps.

3. Set up a standalone operator for each step.

4. Prove “context-freeness invariant” for each operator.

5. Coordinate how operators act alongside each other.

6. Establish an “appending invariant”.

7. Put everything together.
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Appending invariant

1. Append monotone classes one at a time.

2. Break down “appending” into simpler steps.

3. Set up a standalone operator for each step.

4. Prove “context-freeness invariant” for each operator.

5. Coordinate how operators act alongside each other.

6. Establish an “appending invariant”.

7. Put everything together.

Appending invariant

if C is context-free, then C|Av(21) is context-free

depends on items 2.–5. We’ll observe it holds once 2.–5. are done.
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Appending step-by-step

1. Append monotone classes one at a time.

2. Break down “appending” into simpler steps.

3. Set up a standalone operator for each step.

4. Prove “context-freeness invariant” for each operator.

5. Coordinate how operators act alongside each other.

6. Establish an “appending invariant”.

7. Put everything together.
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What we want to do: example

Enumerate Av(21|21|21). Append cells from left to right.

1. Start with a single increasing sequence on the LHS.

2. Now append stuff on the RHS.

3. Finally, append the third cell.
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Tracking the rightmost point
The rightmost point of C is critical. So pick the combinatorial
specification of C that tracks the rightmost point.

S∗ = Z∗ +
S⊕

S∗
+

S∗

S	

S = Z +
S⊕

S
+

S

S	

S	 = Z +
S⊕

S

S⊕ = Z +
S

S	

S∗ = Z∗ + S⊕S∗ + S∗S	
S = Z + S⊕S + SS	
S	 = Z + S⊕S
S⊕ = Z + SS	.
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Designing operators

1. Append monotone classes one at a time.

2. Break down “appending” into simpler steps.

3. Set up a standalone operator for each step.

4. Prove “context-freeness invariant” for each operator.

5. Coordinate how operators act alongside each other.

6. Establish an “appending invariant”.

7. Put everything together.
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Operators 1

Consider Ω1, an operator that appends a single point on the right
of a term Tm = X1 . . .Xm (bottom to top). Rightmost point is in
kth block.

Ω1(Z) = Z∗Z
Ω1(Z∗) = Z∗Z

Ω1(Tm) =

{
Ω1(X ∗1 )Ω0(X2 · · ·Xm) if k = 1

Ω1(X1)Ω0(X2 · · ·Xm) + Ω0(X1)Ω1(X2 · · ·Xm), if k > 1.

Z/Z∗ Ω1

Z
Z∗
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Operator 2
Ω11 is the most involved operator – placing a sequence on the RHS
with designated bottom and top point. Rightmost point in kth
block.

Ω11(Z) = Z(M+ E)Z∗Z
Ω11(Z∗) = Z(M+ E)Z∗Z

Ω11(Th) =


Ω11(X ∗1 )Ω0(X2 · · ·Xm)+

+Ω10(X ∗1 )Ω01(X2 · · ·Xm)

}
if k = 1

Ω11(X1)Ω0(X2 · · ·Xm)+
+Ω10(X1)Ω01(X2 · · ·Xm)+
+Ω0(X1)Ω11(X2 · · ·Xm)

 if k > 1.

Z/Z∗ Ω11

Z
Z∗

ME

Z
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All operators

We need the following information captured when appending
sequences on the RHS.

I Ω0: Nothing appended on the RHS.

I Ω1: Single point appended on the RHS (leftmost & rightmost
coincide)

I Ω∞: Possibly empty sequence by itself.

I Ω10: Point followed by a (possibly empty) sequence above.

I Ω01: Point preceded by a (possibly empty) sequence below.

I Ω11: Point followed by a (possibly empty) sequence followed
by another point.
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Apply Ω11 to a class C = X1X2X
∗
3 X4

p
X4

X ∗3
X2

X1

Ω11(X1)X2X3X4Z

p
X4

X ∗3
X2

X1

X1Ω11(X2)X3X4Z

p
X4

X ∗3
X2

X1

X1X2Ω11(X∗3 )X4Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω01(X2)X3X4Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω∞(X2)Ω01(X∗3 )X4Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω∞(X2X
∗
3 )Ω01(X4)Z

p
X4

X ∗3
X2

X1

Ω10(X1)Ω∞(X2X
∗
3 X4)Ω01(Z)

p
X4

X ∗3
X2

X1

X1Ω10(X2)Ω01(X∗3 )X4Z

p
X4

X ∗3
X2

X1

X1Ω10(X2)Ω∞(X∗3 )Ω01(X4)Z
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Apply Ω11 to a class C = X1X2X
∗
3 X4

p
X4

X ∗3
X2

X1

X1Ω10(X2)Ω∞(X∗3 X4)Ω01(Z)

p
X4

X ∗3
X2

X1

X1X2Ω10(X∗3 )Ω01(X4)Z

p
X4

X ∗3
X2

X1

X1X2Ω10(X∗3 )Ω∞(X4)Ω01(Z)
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Correctness

1. Append monotone classes one at a time.

2. Break down “appending” into simpler steps.

3. Set up a standalone operator for each step.

4. Prove “context-freeness invariant” for each operator.

5. Coordinate how operators act alongside each other.

6. Establish an “appending invariant”.

7. Put everything together.

I Each operator only depends (via +,×) on other operators and
classes. So the specification is finite & closed.

I Action on atoms is trivial.

I Hence, appending invariant holds: if C context-free, then
C|Av(21) context-free.
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Final touches

1. Append monotone classes one at a time.

2. Break down “appending” into simpler steps.

3. Set up a standalone operator for each step.

4. Prove “context-freeness invariant” for each operator.

5. Coordinate how operators act alongside each other.

6. Establish an “appending invariant”.

7. Put everything together.

Symmetry operators
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Appending a monotone decreasing class

q

C4

C∗3
C2

C1

x

v

y

Θ : ∗ 7→ ∗, q 7→ p

p

H4

H3

H∗2
H1

x

v

y

35 / 38



Appending on the left

p

C4

C∗3
C◦2

C1

a
b

w

z

Φ : ∗ 7→ ◦

p

C4

C∗3
C◦2

C1

a
b

w

z
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Combining everything...

! This is incorrect, but close enough !

C|Av(21) = E +M+ Ω1(C∗) + Ω11(C∗)

I For iterated juxtapositions, we set C := C|Av(21), and
continue as before (possibly first pre-processing with
symmetry operators).

I Start with regular C, end up with regular 1× n class.
I Enumerated exactly:

I S|Av(21)
I Av(132)|Av(21)
I Av(21)|Av(21)|Av(21)
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Things to notice

I algorithmic approach → can be automated

I it’s constructive: can enumerate (provide g.f. for) every such
1× n grid class

I D-finite?

I n ×m acyclic grid classes?

I etc.
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