Jakub Slia&an

University of Warwick

About...

W Queen Mary

Flagmatic is designed in a way that means it can be ¥ Gifferent kinds of problems.
Currently, it can solve graph, oriented graph and 3.graph problems. In fact, it was originally created to
solve 3-graph problems,

Flagmatic 2.0 s a reinvention of Flagmatic as Wgage package.
To download, please use the link above. Also, you can read the User's Guide.
You may need to download the Mac binary of CSDP. (More information about CSDP here.)

For Flagmatic 1.5, see the old website.

Problem type

Maximize induced density of a small H in a big F-free G.

Example
Maximize the density of 1 in a A-free G.

Answer
#() < 1/2. Complete balanced bipartite G: ¢(f) > 1/2.

How?

Context:
() = lim max d({, G)
n—oo |G|=n
Rewrite:
d,6) = > d(,F)d(F,G)

|F|=k

Do not know d(F, G), but > f_, d(F,G) =1.
Bound:

d(l,6) < ‘rp;)i d@, F) (poor)

Need a better bound

The above bound is rarely sharp.

Example

d(l,6) < di, F
(56) < max d(s, F)

=d(l,N) =2/3

Only sharp if every subgraph of G on 3 vertices is a . Impossible:

Account for subgraph overlaps

G, is G with one vertex red. Then d(!, G,) is the normalized degree
of the red vertex.
1. d(}, G,)d(}, G.) choosing two neighbours of « (repetition
allowed)
2. d(/N, G,) choosing two neighbours of « (repetition disallowed)

Negligible difference when G big. = start with 1., switch to 2.,
uncolor (average over all choices of « in G). Left with ad(/\, G).

1d(, G.)d(, G)]. ~ %d(.’\., 6)

Manipulation
Vector v = [d(:, G.),d(!, G,)].
[w'].>0
Similarly, for every A > 0,

[vAvT],>0

= > d(, F)d(F,G)

|FI=3

< > d(+[vAV] with A=0
|FI=3

= Z —I—CF d(F, G)
|FI=3

< |r’plax di,F) +cr

Delegating tasks to the PC

Clearly, the proces was rather systematic. Need to know: density
graphs, forbidden graphs. The rest can be done by the PC.

Optimization:

min -y :
dl,F)+cr <~ forall F
A0

Mantel in Flagmatic

AW N R

Maximise { in a graph without copies of .
Recall ¢(I) < 1/2. Extremal graph is complete balanced bipartite:

In Flagmatic:

P = GraphProblem (3, forbid=3:121323, density=2:12)
P.solve_sdp ()

Response:

Writing SDP input file...

Running SDP solver...

Returncode is 0. Objective wvalue is 0.50000001.
Checking numerical bound...

New stuff

N

Add ingredients as you like (ingredient = graph inequality).

Example

Assume that the number or edges on randomly sampled 4 vertices
from G is as in G(n,1/2). Is it true that p(H, G) = K2e(H) for all
graphs H.

In Flagmatic:

P = GraphAssumptionsProblem (4, density=[(4:12233414, 8),

(4:1223341424, 8), (4:121314232434, 24)1)
P.add_assumptions (al, a2, a3, a4, a5, a6, a7)
P.solve_sdp ()

Where al is the assumption that o= 1/275, a2 is the assumption
that e = (?)2_6, and so on.

Some more examples

Looking for p := min{: :+N} Known: 1/33 > p > 1/34.7858.
Flagmatic gives p > 1/34.26.

1 |P = GraphProblem(7, density=[(4:, 1), (4:121314232434,
1)], minimize=True)
P.solve_sdp ()

N

