Flagmatic

Jakub Sliačan

University of Warwick

About...

Maximize induced density of a small H in a big F-free G.

Example Maximize the density of i in a A-free G.

Answer $\phi(\mathbf{I}) \leq 1/2$. Complete balanced bipartite $G: \phi(\mathbf{I}) \geq 1/2$.

How?

Context:

$$\phi(\mathbf{I}) = \lim_{n \to \infty} \max_{|G|=n} d(\mathbf{I}, G)$$

Rewrite:

$$d(\mathbf{\dot{l}},G) = \sum_{|F|=k} d(\mathbf{\dot{l}},F) d(F,G)$$

Do not know d(F, G), but $\sum_{|F|=k} d(F, G) = 1$.

Bound:

$$d(\mathbf{I}, G) \leq \max_{|F|=k} d(\mathbf{I}, F)$$
 (poor)

Need a better bound

The above bound is rarely sharp. Example

$$d(\mathbf{l}, G) \le \max_{|F|=3} d(\mathbf{l}, F)$$
$$= d(\mathbf{l}, \mathbf{A}) = 2/3$$

Only sharp if every subgraph of G on 3 vertices is a \wedge . Impossible:

 G_{\bullet} is G with one vertex red. Then $d(\stackrel{!}{\downarrow}, G_{\bullet})$ is the normalized degree of the red vertex.

- 1. $d(\mathbf{I}, G_{\bullet})d(\mathbf{I}, G_{\bullet})$ choosing two neighbours of \bullet (repetition allowed)
- 2. $d(\Lambda, G_{\bullet})$ choosing two neighbours of \bullet (repetition disallowed)

Negligible difference when G big. \implies start with 1., switch to 2., uncolor (average over all choices of • in G). Left with $\alpha d(\checkmark, G)$.

$$\llbracket d(\mathbf{I}, G_{\bullet})d(\mathbf{I}, G_{\bullet}) \rrbracket_{\bullet} \sim \frac{1}{3}d(\mathbf{A}, G)$$

Manipulation

Vector
$$\mathbf{v} = [d(\mathbf{\bullet}, G_{\mathbf{\bullet}}), d(\mathbf{\bullet}, G_{\mathbf{\bullet}})].$$
$$\llbracket \mathbf{v} \mathbf{v}^T \rrbracket_{\mathbf{\bullet}} \ge 0$$

Similarly, for every $A \succeq 0$,

$$\llbracket vAv^T \rrbracket_{\bullet} \geq 0$$

$$d(\mathbf{I}, G) = \sum_{|F|=3} d(\mathbf{I}, F) d(F, G)$$

$$\leq \sum_{|F|=3} d(\mathbf{I}, F) d(F, G) + \llbracket v A v^T \rrbracket \quad \text{with } A \succeq 0$$

$$= \sum_{|F|=3} \left(d(\mathbf{I}, F) + c_F \right) d(F, G)$$

$$\leq \max_{|F|=3} d(\mathbf{I}, F) + c_F$$

Clearly, the proces was rather systematic. Need to know: density graphs, forbidden graphs. The rest can be done by the PC.

Optimization:

 $\min \gamma:$ $d(\mathbf{I},F)+c_F\leq \gamma$,for all F $A\succeq 0$

Mantel in Flagmatic

Maximise I in a graph without copies of Δ . Recall $\phi(I) \leq 1/2$. Extremal graph is complete balanced bipartite:

In Flagmatic:

1 P = GraphProblem(3, forbid=3:121323, density=2:12)
2 P.solve_sdp()

Response:

- Writing SDP input file...
- 2 Running SDP solver...
- 3 Returncode is 0. Objective value is 0.50000001.
- 4 Checking numerical bound...

New stuff

Add ingredients as you like (ingredient = graph inequality).

Example

Assume that the number or edges on randomly sampled 4 vertices from G is as in $\mathbb{G}(n, 1/2)$. Is it true that $p(H, G) = K_2^{e(H)}$ for all graphs H.

In Flagmatic:

Where all is the assumption that $\cdot \cdot = 1/2^{-6}$, a2 is the assumption that $\cdot \cdot = \binom{6}{1}2^{-6}$, and so on.

Looking for $\rho := \min\{\bullet, + \Join\}$. Known: $1/33 > \rho > 1/34.7858$. Flagmatic gives $\rho > 1/34.26$.

P = GraphProblem(7, density=[(4:, 1), (4:121314232434, 1)], minimize=True)

2 P.solve_sdp()